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Abstract

We compute the correlation functions mixing the powers of two non-commuting ran-
dom matrices within the same traces. The angular part of the integration was par-
tially known from [17, 16]: we pursue the calculation and carry out the eigenvalues
integration reducing the problem to the construction of the associated biorthogonal
polynomials. The result is a determinant involving the recursion coefficients of the
orthogonal polynomials.

1 Introduction and main result

Random matrix models were first introduced in the context of nuclear physics in order to describe the energy
levels statistics for very large nuclei. Wigner proposed the hypothesis that these were distributed as the
eigenvalues of a matrix with random entries. Later, random matrix models were used in many areas of physics
and mathematics [15, 11, 6].

An important application of random matrices is to 2d gravity, that is, statistical physics on a random surface.
In fact, the perturbative expansion of a matrix integral can be accomplished by drawing Feynman graphs on
fixed-genus surfaces. Matrix integration can therefore encode the summation over the set of discretized surfaces
(possibly carrying some type of matter).

When the parameters of the model are fine-tuned near a critical point the average graph’s size diverges
and macroscopic graphs dominate the sum, so that suitable critical limits can represent statistical models over
smooth surfaces. The smooth surfaces that one describes with the aid of matrix models have properties of
scale invariance: this means that the critical points of matrix integrals are related to representations of the
conformal group. We recall that its finite dimensional representations are classified by two integers (p, q): it
is known that one-matrix-models provide instances of (p, 2)-irreps only, where as two-matrix-models allow to
obtain (p, q)–representations.
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Possibly the first such application of the two–matrix–model was to describe the Ising model on a random
surface; in this case the Ising ferromagnetic transition corresponds to the conformal minimal model (3, 4). To
see this, one should associate a color (or spin) + or − to each matrix so that the vertices of one matrix are
labelled with a plus sign and the vertices of the other matrix with a minus sign. Then the Feynman graphs
generated by a two matrix model represent discrete surfaces carrying spins (+ and -), i.e. an Ising model on a
random surface.

The correlation functions of random matrices generate discrete surfaces with boundaries, and thus are in
relationship with boundary conformal theory. A formula for correlation functions representing surfaces with
mono-colored boundaries has been known since [10]. It is the aim of this paper to give a formula for a mixed
correlation function, i.e. the generating function for discrete surfaces with a bi-colored boundary.

The 2-matrix model has attracted a lot of attention recently, and important progress have been made in
the study of the associated bi-orthogonal polynomials [3, 5, 13]. Here, we will express the mixed correlation
function in terms of the bi-orthogonal polynomials.

1.1 Definition and notation

We consider two N ×N Hermitian matrices M1,M2, with a probability measure

dµ(M1,M2) := ZN−1dM1dM2 exp
[
− Tr(V1(M1) + V2(M2)−M1M2)

]
,

ZN :=
∫ ∫

dM1dM2 exp
[
− Tr(V1(M1) + V2(M2)−M1M2)

]
, (1-1)

where dM1dM2 is the product of Lebesgue measures of all the independent real and imaginary parts of the
components of the two matrices. The functions V1 and V2 are called the potentials and must be chosen so as to
make the integral convergent. The normalization factor ZN is called the “partition function”, where the name
“function” refers to its dependence on the two potentials.

One can rewrite the measure in term of eigenvalues and angular integrals [12]:

dµ(M1,M2) := ZN−1∆(X)2∆(Y )2 exp
[
−

N∑
i=1

(V1(xi) + V2(yi))
]
eU
†XUV †Y V dUdV

N∏
i=1

dxidyi ,

X := diag(x1, . . . , xN ), Y := diag(y1, . . . , yN ), U, V ∈ U(N)

ZN :=
∫ ∫ N∏

i=1

dxidyi∆(X)2∆(Y )2dUdV exp
[
−

N∑
i=1

(V1(xi) + V2(yi))
]
eU
†XUV †Y V . (1-2)

where dUdV is the product Haar measure over U(N) × U(N). In the original two Hermitian matrix model,
the integration path for the xi’s and yj ’s is the real axis (location of the eigenvalues of a Hermitian matrix),
however, the model can be generalized to include complex paths or their homology classes in case the potentials
are holomorphic or meromorphic [3, 2].

1.2 Correlation functions

In applications of the two–matrix–model to statistical physics on a random surface, one is interested in comput-
ing correlation functions involving traces of products of powers of M1 and M2. Each such correlation function
can be expanded in Feynman graphs, which represent discrete surfaces with boundaries: the number of bound-
aries is the number of traces, the length of each boundary is the total power of M1 plus the total power of M2

within the trace [6].
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For instance: 〈TrM r
1 〉 is the generating function for discrete surfaces with one boundary (a circle) of length

r made of + spins only. 〈TrM s
2 〉 is the generating function for discrete surfaces with one boundary of length s

made of − spins only. 〈TrM r
1M

s
2 〉 is the generating function for discrete surfaces with one bi-colored boundary

of length r + s made of r + spins, followed by s − spins.
More generally, 〈TrM r1

1 M s1
2 M r2

1 M s2
2 . . .M rn

1 M sn
2 〉 is the generating function for discrete surfaces with one

2n-colored boundary of length
∑

i ri +
∑

i si made of r1 + spins, followed by s1 − spins, followed by r2 +
spins, . . ., followed by sn − spins.

One may also be interested in “multi-loop” correlators (i.e. more than one boundary), for instance:
〈TrM r1

1 TrM r2
1 〉conn is the generating function for discrete surfaces with two spin + boundaries, one of length r1,

the other of length r2. More generally, one may consider correlation functions involving an arbitrary number
of traces, each containing arbitrary words of M1 and M2.

The correlation functions, with an arbitrary number of traces, with each trace containing powers of only one
matrix have been known since the work of [10]. They can be expressed in terms of bi-orthogonal polynomials.

The aim of the present article is to express the mixed correlation function:

〈TrM r
1M

s
2 〉 (1-3)

in terms of bi-orthogonal polynomials too, and confirm that the key property of these models is that all relevant
spectral statistics can be reduced to the computation of the corresponding biorthogonal polynomials [14, 10, 4].

1.3 Bi-orthogonal polynomials

Two sequences of monic polynomials

πn(x) = xn + · · · , σn(y) = yn + · · · , n = 0, 1, . . . (1-4)

are called biorthogonal if they are “orthogonal” with respect to a coupled measure on the product space:∫
R

∫
R

dxdy πn(x)σm(y)e−V1(x)−V2(y)+xy = hnδmn, hn 6= 0 ∀n ∈ N (1-5)

where V1(x) and V2(y) are the functions (called potentials) appearing in the two-matrix model measure (1-1).
It is convenient to introduce the associated quasipolynomial differentials defined by the formulas

ψn(x) :=
1√
hn−1

πn−1(x)e−V1(x)dx (1-6)

φn(y) :=
1√
hn−1

σn−1(y)e−V2(y)dy . (1-7)

In terms of these two sequences of differentials the multiplications by x and y respectively are represented by
semiinfinite square matrices Q = [Qij ]i,j∈N∗ and P = [Pij ]i,j∈N∗ according to the formulae

xψn(x) =
∑
m

Qn,mψm(x) ; yφn(y) =
∑
m

Pm,nφm(y)

Qn,m = 0 = Pm,n, if n > m+ 1. (1-8)

The matrices P and Q have a rich structure and satisfy the “string equation” [P,Q] = id. However we do not
need any of their properties except for eq. (1-8) to derive our present results, and therefore we refer for further
details to [3, 4, 5, 2] where these models are studied especially in the case of polynomial potentials. We also
point out that the model can easily be generalized to accommodate contours of integration other than the real
axes [3, 2] leaving intact all the properties which are relevant to the following computations.
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1.4 The main result

Our goal is to prove a formula for the generating function of the correlators

〈Tr(M1
rM2

s)〉V1,V2 :=
1
ZN

∫
dM1dM2Tr(M1

rM2
s) exp (−Tr (V1(M1) + V2(M2)−M1M2)) . (1-9)

By generating function we mean the formal double Laurent series〈
Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

:=
∑
r,s

x−r−1y−s−1〈Tr(M1
rM2

s)〉V1,V2 . (1-10)

The main obstacle to this sort of computations so far was posed by the “angular integration” over the unitary
group U(N).

One can trace in the literature various attempts at this computation using the loop equations [18, 7, 8]. A
closed formula was found in the large N limit in [8], but an exact formula for finite N was never derived.

Our strategy is that of reducing the computation of (1-9) or even better (1-10) to the computation of the
corresponding biorthogonal polynomials associated with the measure (1-1).

We can now write down the main result of the paper which is both simple and beautiful:

〈
Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

= 1− det
[
1N − π

N

1
x−Q

1
y − P

π
N

t

]
(1-11)

where P and Q are the matrices in eq. (1-8) and π
N

denotes the projector C∞ 7→ C
N onto the span of the

first N canonical basis vectors, i.e., the N ×∞ matrix with nonzero entries π
N
i,i = 1, i = 1, . . . N . Formula

(1-11) should be properly understood in the sense of an identity of formal Laurent series in the variables x and
y, although it would be possible to give an analytic meaning to both sides. For example from (1-11) one can
easily obtain the following identities

〈Tr(M1
rM2)〉V1,V2

= Tr(QrPΠ)− 1
2

r−1∑
j=0

(
Tr(QjΠ)Tr(Qr−1−jΠ)− Tr(QjΠQr−1−jΠ)

)
(1-12)

〈
Tr(M1

rM2
2)
〉
V1,V2

= Tr(QrP 2Π)−
∑

k1+k2=r−1

(
Tr(Qk1PΠ)Tr(Qk2Π)− Tr(Qk1PΠQk2Π)

)
(1-13)

+
∑

k1+k2+k3=r−2

(
1
3

Tr(ΠQk1ΠQk2ΠQk3)− 1
2

Tr(ΠQk1ΠQk2)Tr(ΠQk3)+
1
6

Tr(ΠQk1)Tr(ΠQk2)Tr(ΠQk3)
)

(1-14)

where now Π = πtπ is the semiinfinite square matrix with nonzero entries Πi,i = 1, i = 1, . . . N .
In fact in the course of the proof of eq. (1-11) we will also prove the following strong result for the

correlations of 〈Tr(M1
rM2

s)〉V1,V2 which naturally extends to arbitrary (analytic) functions f(x), g(y):

〈Tr(M1
rM2

r)〉V1,V2 = (1-15)
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=
min(r,s)∑
n=0

(−1)n

(n+ 1)!

∫
· · ·
∫

e
∑
k xkyk

det


1 · · · 1
x1 · · · xn+1
...

...
xn−1

1 · · · xn−1
n+1

xr1 · · · xrn+1



det


1 · · · 1
x1 · · · xn+1
...

...
xn1 · · · xnn+1



det


1 · · · 1
y1 · · · yn+1
...

...
yn−1

1 · · · yn−1
n+1

ys1 · · · ysn+1



det


1 · · · 1
y1 · · · yn+1
...

...
yn1 · · · ynn+1


det
[
K12(xk, y`)

]
k,`≤n+1

.(1-16)

The formula can be extended to arbitrary analytic functions f(x) and g(y) to give

〈Tr(f(M1)g(M2))〉V1,V2 = (1-17)

=
∞∑
n=0

(−1)n

(n+ 1)!

∫
· · ·
∫

e
∑
k xkyk

det


1 · · · 1
x1 · · · xn+1
...

...
xn−1

1 · · · xn−1
n+1

f(x1)· · ·f(xn+1)



det


1 · · · 1
x1 · · · xn+1
...

...
xn1 · · · xnn+1



det


1 · · · 1
y1 · · · yn+1
...

...
yn−1

1 · · · yn−1
n+1

g(y1)· · ·g(yn+1)



det


1 · · · 1
y1 · · · yn+1
...

...
yn1 · · · ynn+1


det
[
K12(xk, y`)

]
k,`≤n+1

(1-18)

Here we have used the kernel constructed from the quasipolynomials [10],

K12(x, y) :=
N∑
n=1

ψn(x)φn(y) =
N−1∑
n=0

πn(x)σn(y)e−V1(x)−V2(y)

hn
dxdy . (1-19)

2 Proofs of formulæ (1-11) and (1-16)

We want to compute the expectation values

〈Tr(M1
rM2

s)〉V1,V2
:=

1
ZN

∫
dµ(M1,M2)Tr(M1

rM2
s). (2-1)

We denote by {xi}i=1..N and {yi}i=1..N the spectra of the two matrices M1, M2 and by U ∈ U(N) the relative
angles. Then we can reduce the integral (2-1) to an integral over the spectra of M1,M2 and the unitary group
of the relative angles. Indeed we have

〈Tr(M r
1M

s
2 )〉V1,V2 :=

1
ZN

∫
dµ(M1,M2)Tr(M r

1M
s
2 ) = (2-2)

=
1
ZN

∫ N∏
i=1

dxidyi e−V1(xi)−V2(yi)∆2(X)∆2(Y )
N∑

i,j=1

xi
ryj

s

∫
U(N)

dU |Uji|2eTr(XU†Y U) , (2-3)

where X = diag(x1, . . . , xN ), Y = diag(y1, . . . , yN ) and ∆(X), ∆(Y ) denote the Vandermonde determinants.
The computation requires the knowledge of the two–points correlators for the unitary integral in eq. (2-3)
which we analyze in the next subsection.
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2.1 Two–points correlator for the unitary integral

The computation of this quantity has been considered in the finite N regime in the two papers [16, 17]. In [17]
a complete algorithm was described that allows the construction of a formula for the most general correlator

〈Ui1j1U
†
k1l1
· · ·UinjnU

†
knln
〉U(N) :=

∫
U(N)

dU Ui1j1U
†
k1l1
· · ·UinjnU

†
knln

eTr(XU†Y U) . (2-4)

Such algorithm involves the introduction of the parametrization of the unitary group given by the Gel’fand-
Tsetlin coordinates associated to one of the two matrices Mi; however the computation is highly involved and
in [17] the problem was not carried through to a completely manageable formula.

On the other hand in [16] a very simple closed formula was proposed for the two–point correlator 〈|Uji|2〉U(N)

in terms of a generating function, that is

∑
i,j

aibj〈|Uji|2〉U(N) =
N∑

i,j=1

aibj

∫
U(N)

dU |Uji|2eTr(XU†Y U) = (2-5)

=
1

∆(X)∆(Y )

∑
ρ∈SN

ε(ρ)e
∑
x`yρ(`)

N−1∑
n=0

(−1)n
∑

i1<i2<...<in+1

det


1 · · · 1
xi1 · · · xin+1

...
...

xn−1
i1

· · · xn−1
in+1

ai1 · · · ain+1



det


1 · · · 1
xi1 · · · xin+1

...
...

xni1 · · · xnin+1



det


1 · · · 1

yρ(i1) · · · yρ(in+1)

...
...

yn−1
ρ(i1) · · · yn−1

ρ(in+1)
bρ(i1) · · · bρ(in+1)



det


1 · · · 1

yρ(i1) · · · yρ(in+1)

...
...

ynρ(i1) · · · ynρ(in+1)


, (2-6)

with the understanding that the Haar measure of the unitary group U(N) has been properly normalized. This
formula will be the starting point of our analysis: however the author of [16] did not actually prove the formula
but just made an educated (and -as it turns out- correct) guess.

Therefore, before proceeding to proving our main result (1-11) we want to fill in the gaps between the full
but unpractical algorithm given in [17] and the practical but unproven formula in [16]. We do not need the full
generality of [17]: our departure point is formula (1.4) ibidem, restricted to the particular case of the two–point
correlator. For the ease of the reader we rewrite the aforementioned formula in the notation of our present
paper

〈U1j1U
†
k11 · · ·U1jnU

†
kn1〉U(N) =

δj1k1 · · · δjnkn
∆(X)∆(y2, . . . , yN )

(
N−1∏
k=1

∫ xk+1

xk

dξk

) N−1∏
`=1

(ξ` − xj1) · · ·
N−1∏
`=1

(ξ` − xjn)∏
` 6=j1

(x` − xj1) · · ·
∏
` 6=jn

(x` − xjn)
×

× exp

[
N∑
k=1

xky1 −
N−1∑
k=1

ξky1

]
det
[
eξiyj+1

]
i,j=1..N−1

. (2-7)

Here the Haar measure of the unitary group has been properly normalized, ∆(y2, . . . , yN ) denotes the Van-
dermonde determinant of the N − 1 numbers y2, ...yN , while ∆(X) is the short form for the Vandermonde
determinant of the whole spectrum of the matrix X.
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Eq. (2-7) was proven rigorously in [17] for x1 < x2 < . . . < xN ; however it is straightforward to realize
that the unitary integral in eq. (2-3) defines an analytic (in fact entire) function of the variables X and Y .
Therefore the result extends to statistical ensembles of pairs M1, M2 of normal matrices3 with their spectrum
on arbitrary paths on the complex plane. Moreover the restriction on the order of the spectrum can be lifted
because the result is analytic in the variables x1, . . . , xN and can be analytically continued to CN .

We now set n = 1 in eq. (2-7) and hence k1 = j1 = i. Then we have :

〈|U1i|2〉U(N) =
e
∑N x`y1

∆(X)∆(y2, . . . , yN )
∏
` 6=i

(x` − xi)

∑
ρ∈SN−1

ε(ρ)
N−1∏
k=1

∫ xk+1

xk

dξk(ξk − xi)eξk(yρ(k)+1−y1) = (2-8)

=
e
∑N x`y1

∆(X)∆(y2, . . . , yN )
∏
` 6=i(x` − xi)

∑
ρ∈SN−1

ε(ρ) (2-9)

[(
xk+1−xi
yρ(k)+1−y1

− 1
(yρ(k)+1−y1)2

)
exk+1(yρ(k)+1−y1)−

(
xk−xi

yρ(k)+1−y1
− 1

(yρ(k)+1−y1)2

)
exk(yρ(k)+1−y1)

]
=(2-10)

=
e
∑N x`y1

∆(X)∆(Y )
∏
` 6=i(x` − xi)

∏
` 6=1(y` − y1)

∑
ρ∈SN−1

ε(ρ) (2-11)

[(
(xk+1 − xi)(yρ(k)+1 − y1)− 1

)
exk+1(yρ(k)+1−y1) −

(
(xk − xi)(yρ(k)+1 − y1)− 1

)
exk(yρ(k)+1−y1)

]
=(2-12)

We observe that the following identity holds

e
∑Nx`y1

∑
ρ∈SN−1

ε(ρ)
[(

(xk+1−xi)(yρ(k)+1−y1)−1
)

exk+1(yρ(k)+1−y1)−
(

(xk − xi)(yρ(k)+1−y1)−1
)

exk(yρ(k)+1−y1)

]
= (2-13)

= −det
[(

(x`−xi)(ym−y1)−1
)

ex`ym
]
`,m=1...N

(2-14)

which is realized by performing elementary row operations on the matrix inside the determinant in (2-14) so
that the N ×N determinant reduces to a (N − 1)2 determinant by use of Laplace’s formula.

The more general case of the expectation value of the (i, j) element is obtained by permutation of the
spectrum of the matrix Y so as to give the formula

〈|Uji|2〉U(N) =
−1

∆(X)∆(Y )

det
[(

(x` − xi)(ym − yj)− 1
)

ex`ym
]
`,m=1...N∏

` 6=i
(x` − xi)

∏
`6=j

(y` − yj)
(2-15)

This form of Shatashvili’s formula (2-7) for the case n = 1 is remarkably simple but not suitable for our later
purposes. Moreover it is not yet clearly equivalent to Morozov’s formula (2-6), which is what we need for our
computation. It will be proved in appendix A that the two formulæ are indeed equivalent.

3We recall that a normal matrix is a matrix that commutes with its Hermitian-transposed. Any such matrix can be diagonalized
using a unitary transformation (and vice-versa).
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2.2 The correlators 〈TrM1
rM2

s〉V1,V2 and their generating function

Starting from eq. (2-3) and using formula (2-6) with ai = xi
r and bj = yj

s we obtain∫
U(N)

dU Tr(XrU †Y sU)eTr(XU†Y U) =
N∑

i,j=1

xi
ryj

s

∫
U(N)

dU |Uji|2eTr(XU†Y U) = (2-16)

=
1

∆(X)∆(Y )

∑
ρ∈SN

ε(ρ)e
∑
x`yρ(`)

N−1∑
n=0

(−1)n
∑

i1<i2<...<in+1

det


1 · · · 1
xi1 · · · xin+1

...
...

xn−1
i1

· · · xn−1
in+1

xri1 · · · xrin+1



det


1 · · · 1
xi1 · · · xin+1

...
...

xni1 · · · xnin+1



det


1 · · · 1

yρ(i1) · · · yρ(in+1)

...
...

yn−1
ρ(i1) · · · yn−1

ρ(in+1)
ysρ(i1) · · · ysρ(in+1)



det


1 · · · 1

yρ(i1) · · · yρ(in+1)

...
...

ynρ(i1) · · · ynρ(in+1)


,(2-17)

with the understandings that the Haar measure of the unitary group U(N) has been properly normalized and
that for n = 0 the ratio of determinants should be xri1y

s
ρ(i1). The first observation is that the sum over n does

not actually need to be extended up to the size N of the random matrices because the determinants will vanish
for n > min(r, s). The next remark is that the ratios of determinants actually define certain totally symmetric
polynomials of their arguments of degree r − n and s − n respectively: in fact they are Schur polynomials
corresponding to hook Young diagrams

Sr(xi1 , . . . , xin+1) :=

det


1 · · · 1
xi1 · · · xin+1

...
...

xn−1
i1

· · · xn−1
in+1

xri1 · · · xrin+1



det


1 · · · 1
xi1 · · · xin+1

...
...

xni1 · · · xnin+1


=

∑
a1≤a2≤...≤ar−n

r−n∏
k=1

xiak =
∑

j1+···+jn+1=r−n
xj1i1 · · ·x

jn+1

in+1
, (2-18)

and a similar expression for the y part. It is interesting to notice that in eq. (2-17) the characters of the
representations of the group GL(N) appear; the same equation could possibly be derived from the character
expansion of the integrand.

The formal generating function of these Schur polynomials is:

∞∑
r=0

1
xr+1

Sr(xi1 , . . . , xin+1) =
n+1∏
k=1

1
x− xik

(2-19)

Eq. (2-3) now becomes

∫
dµ(M1,M2)Tr(M r

1M
s
2 ) =

∫ N∏
i=1

dµ(xi)dν(yi) ∆(X)∆(Y )
∑
ρ∈SN

ε(ρ)e
∑
x`yρ(`) ×
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×
min(r,s)∑
n=0

(−1)n
∑

i1<i2<...<in+1

Sr(xi1 , . . . , xin+1)Ss(yρ(i1), . . . , yρ(in+1)), (2-20)

where dµ(x) := e−V1(x)dx and dν(y) := e−V2(y)dy.
Using eq. (2-19) we have:∫

dµ(M1,M2)Tr
(

1
x−M1

1
y −M2

)
=

=
∫ N∏

i=1

dµ(xi)dν(yi) ∆(X)∆(Y )
∑
ρ∈SN

ε(ρ)e
∑
x`yρ(`)

N−1∑
n=0

(−1)n
∑

i1<i2<...<in+1

n+1∏
k=1

1
(x− xik)(y − yρ(ik))

. (2-21)

By a relabelling of the y’s the sum over ρ becomes an overcounting factor N !:∫
dµ(M1,M2)Tr

(
1

x−M1

1
y −M2

)
=

N !
∫ N∏

i=1

dµ(xi)dν(yi) ∆(X)∆(Y )e
∑
x`y`

N−1∑
n=0

(−1)n
∑

i1<i2<...<in+1

n+1∏
k=1

1
(x− xik)(y − yik)

. (2-22)

This formula allows us to obtain the following expression for the expectations〈
Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

=

=
N !
ZN

∫ N∏
i=1

dµ(xi)dν(yi) ∆(X)∆(Y )e
∑
x`y`

N−1∑
n=0

(−1)n
∑

i1<...<in+1

n+1∏
k=1

1
(x− xik)(y − yik)

=
1
N !

N−1∑
n=0

(−1)n
∑

σ,τ∈SN

ε(στ)
∑

i1<i2<...<in+1

∫ N∏
j=1

ψσ(j)(xj)φτ(j)(yj)e
xjyj

n+1∏
k=1

1
(x− xik)(y − yik)

. (2-23)

In eq. (2-23) we have used the normalized quasi-polynomial differentials defined in (1-7), the fact that, with
our normalizations for the Haar measure of U(N), the partition function is ZN = (N !)2

∏N−1
j=0 hj (see [14]),

and the identities

∆(X)
N∏
k=1

dµ(xk) =

N−1∏
j=0

√
hj

 ∑
σ∈SN

ε(σ)
N∏
k=1

ψσ(k)(xk) (2-24)

∆(Y )
N∏
k=1

dν(yk) =

N−1∏
j=0

√
hj

 ∑
τ∈SN

ε(τ)
N∏
k=1

φτ(k)(yk) , (2-25)

which are obtained by replacing the monomials in the Vandermonde determinants by the biorthogonal polyno-
mials of the same degree.

2.2.1 Proof of formula (1-16)

We are now in the position of proving formula (1-16) in a few strokes. Taking the coefficient of xrys from the
formal generating function in eq. (2-23) we obtain the expression
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〈Tr (M1
rM2

s)〉V1,V2
=

=
1
N !

min(r,s)∑
n=0

(−1)n
∑

i1<i2<...<in+1

∑
σ,τ∈SN

ε(στ)
∫ N∏

j=1

ψσ(j)(xj)φτ(j)(yj)e
xjyjSr(x[i]n+1

)Ss(y[i]n+1
) (2-26)

=
1
N !

min(r,s)∑
n=0

(−1)n
∑

i1<i2<...<in+1

∑
σ,τ∈SN

ε(στ)
∫ N∏

j 6∈{i1,...,in+1}

ψσ(j)(xj)φτ(j)(yj)e
xjyj × (2-27)

×
∫ n+1∏

k=1

ψσ(ik)(xik)φτ(ik)(yik)exikyikSr(x[i]n+1
)Ss(y[i]n+1

) . (2-28)

In this formula the notation x[i]n+1
means the sequence of variables xi1 , . . . , xin+1 (similarly for the y’s) and

we have used the fact that the Schur polynomials Sr as defined in (2-18) vanish if the number of variables is
greater than r. Next, the orthogonality relations between the φn’s and the ψn’s in line (2-27) imply that the
sum over the permutations σ, τ is restricted to those permutations such that

σ = τ ◦ η , η ∈ S{i1, . . . in+1} (2-29)

where S{i1, . . . in+1} denotes the group of permutation of the indices ik. The restriction on the indices
i1, . . . , in+1 can be lifted because the following expression is permutation invariant in the label of those in-
dices and when two such indices coincide the corresponding term vanishes due to the alternating form of the
sum. This will produce an overcounting of a factor (n+ 1)! which must be corrected: moreover we can relabel
the variables of integration of the integral in line (2-28) from xik , yik to xk, yk

〈Tr (M1
rM2

s)〉V1,V2
=

=
1
N !

∑
σ∈SN

min(r,s)∑
n=0

(−1)n

(n+ 1)!

∑
i1,i2,...,in+1

∑
η∈Sn+1

ε(η)
∫

e
∑n+1
k xkykSr(x[1,...])Ss(y[1,...])

n+1∏
k=1

ψik(xk)φiη(k)
(yk) = (2-30)

=
min(r,s)∑
n=0

(−1)n

(n+ 1)!

∑
i1,i2,...,in+1

∑
η∈Sn+1

ε(η)
∫

e
∑n+1
k xkykSr(x[1,...,n+1])Ss(y[1,...,n+1])

n+1∏
k=1

ψik(xk)φik(yη−1(k)) = (2-31)

=
min(r,s)∑
n=0

(−1)n

(n+ 1)!

∑
i1,i2,...,in+1

∑
η∈Sn+1

ε(η)
∫

e
∑n+1
k xkykSr(x[1,...,n+1])Ss(y[1,...,n+1])

n+1∏
k=1

ψik(xk)φiη(k)
(yk) = (2-32)

=
min(r,s)∑
n=0

(−1)n

(n+ 1)!

∑
i1,i2,...,in+1

∑
η∈Sn+1

ε(η)
∫

e
∑n+1
k xkykSr(x[1,...,n+1])Ss(y[1,...,n+1])

n+1∏
k=1

ψik(xk)φik(yη−1(k)) = (2-33)

=
min(r,s)∑
n=0

(−1)n

(n+ 1)!

∫
e
∑n+1
k xkykSr(x[1,...,n+1])Ss(y[1,...,n+1]) det

[
K12(xj , y`)

]
j,`≤n+1

(2-34)

where we have used the definition of the kernel K12(x, y) given in eq. (1-19). This concludes the proof of eq.
(1-16) from which formula (1-18) follows immediately.
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2.2.2 Proof of formula (1-11)

Resuming from eq. (2-23) and performing a relabelling of the x’s and the y’s allows to choose ik = k, and the
sum over i1 < . . . < in+1 becomes a combinatorial factor:〈

Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

=

=
1
N !

∞∑
n=0

(−1)n
(

N
n+ 1

) ∑
σ,τ∈SN

ε(στ)
∫ N∏

j=1

ψσ(j)(xj)φτ(j)(yj)e
xjyj

n+1∏
k=1

1
(x− xk)(y − yk)

. (2-35)

Now, the equations (1-5) and (1-8) imply that∫
ψσ(j)(x

′)φτ(j)(y
′)ex

′y′ = δσ(j),τ(j) , (2-36)

and ∫
ψσ(j)(x

′)φτ(j)(y
′)ex

′y′ 1
(x− x′)(y − y′)

= Wσ(j),τ(j) (2-37)

where W is the N ×N square matrix4:

W := π
N

1
x−Q

1
y − P

π
N

t . (2-38)

Therefore τ = ση where η is a permutation of the n+ 1 first indices only, and we can write:〈
Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

=
1
N !

∞∑
n=0

(−1)n
(

N
n+ 1

)∑
σ∈SN

∑
η∈Sn+1

ε(η)
n+1∏
j=1

Wσ(j),ση(j)

=
∞∑
n=0

(−1)n

(n+ 1)!(N − n− 1)!

∑
σ∈SN

det
(
Wσ(i),σ(j)

)
i,j=1,...,n+1

. (2-39)

We note αi = σ(i) and we write:〈
Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

=
∞∑
n=0

(−1)n

(n+ 1)!(N − n− 1)!

∑
α1 6=... 6=αN

det
(
Wαi,αj

)
i,j=1,...,n+1

, (2-40)

where the sum over αn+2, . . . , αN disappears and brings a factor (N − n− 1)!:〈
Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

=
∞∑
n=0

(−1)n

(n+ 1)!

∑
α1 6=... 6=αn+1

det
(
Wαi,αj

)
i,j=1,...,n+1

=
∞∑
n=0

(−1)n

(n+ 1)!

∑
α1 6=... 6=αn+1

∑
η∈Sn+1

ε(η)
n+1∏
j=1

Wαi,αη(j)
, (2-41)

4We remind the reader that this matrix should be properly understood as a formal power series in inverse powers of x and y,
although an analytic definition could be given in terms of the biorthogonal polynomials. However this is unnecessary for the scope
of the present paper.
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and we can replace the sum over distinct α’s by a sum over all α’s:〈
Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

=
∞∑
n=0

(−1)n

(n+ 1)!

∑
η∈Sn+1

ε(η)
∑

α1,...,αn+1

n+1∏
j=1

Wαi,αη(j)
. (2-42)

If η is decomposed into a product of N (η) cyclic permutations of lengths l1(η)+ . . .+ lN (η)(η) = n+1, we have:

〈
Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

=
∞∑
n=0

(−1)n

(n+ 1)!

∑
η∈Sn+1

N (η)∏
j=1

(−1)lj(η)+1TrW lj(η)

= −
∞∑
n=0

1
(n+ 1)!

∑
η∈Sn+1

N (η)∏
j=1

(−TrW lj(η)), (2-43)

Now we use the following Lemma, which is a classical result in combinatorics:

Lemma 2.1 Let Gm be a function defined on the permutation group of m elements Sm with the cluster property, i.e.,
such that if η = η1 ◦ η2 is a decomposition into disjoint permutations of m′ and m′′ elements (and hence m = m′ +m′′)
then

Gm(η) = Gm′(η1)Gm′′(η2) . (2-44)

Under these circumstances we have the identity

exp

( ∞∑
m=1

∑
σ∈Cm

xm

m!
Gm(σ)

)
= 1 +

∞∑
m=1

xm

m!

∑
η∈Sm

Gm(η) , (2-45)

where Cm denotes the set of all permutations of maximal length and has cardinality (m− 1)!.

In other words this lemma says that if G has the cluster property, then taking the logarithm of the RHS of
eq. (2-45) removes all “nonconnected” contributions and returns the “connected components” only. In view of
Lemma 2.1 let us define

Gm(η) :=
N (η)∏
j=1

(−TrW lj(η)) (2-46)

which has clearly the cluster property, and we have:

1−
〈

Tr
(

1
x−M1

1
y −M2

)〉
V1,V2

= 1 +
∞∑
m=1

1
m!

∑
η∈Sm

Gm(η) = exp

 ∞∑
m=1

∑
η∈Cm

1
m!
Gm(η)


= exp

[
−
∞∑
m=1

TrWm

m

]
= exp [Tr ln (1N −W )] = det(1N −W ) (2-47)

This concludes our proof of formula (1-11).

3 Conclusions

Formula (1-11) is quite simple in spite of the long computations involved in its proof. It is tempting to imagine
that also more complicated multi-correlators could be reduced to a computation involving the matrices P and
Q, i.e., to biorthogonal polynomials. Quite clearly the possibility rests on having a manageable formula for
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the generic multi-correlators of the Itzykson-Zuber-Harish-Chandra integral. There are indications that such a
formula should be derivable: for example it is quite simple to obtain a formula for a correlator of entries with
the same first index. Indeed starting from eq. (2-7) and proceeding in the same way we did in order to obtain
eq. (2-15) one can easily prove the following formula

〈
n∏
a=1

|Uj ia |2〉U(N) =
(−1)n

n!

det
[
Fm(x`)ex`ym

]
`,m=1...N

∆(X)∆(Y )
n∏
a=1

∏
` 6=ia

(x` − xia)
∏
` 6=j

(y` − yj)n
(3-1)

where

Fm(ξ) :=
[
(ym−yj)n

n∏
a=1

(ξ−xia)−(ym−yj)n−1
n∑
`=1

n∏
a 6=`

(ξ−xia)+. . .+(−1)nn!
]

= (3-2)

=
n∑
s=0

(−1)s(ym−yj)n−s
ds

dξs

n∏
a=1

(ξ−xia) . (3-3)

However the computation for non-equal first indices becomes quickly extremely complicated at least using the
technique in [17]. Nonetheless we hope that this first computation can break through the general belief that
computations of correlators in multi-matrix models are not feasible in the finite-N regime due to the angular
integrations.

It should also be remarked that for polynomial potentials we could use the so-called “loop” equations to
obtain information on other correlators. The result, however would be dependent on the specific form of the
potentials and would not provide information on the HCIZ integral itself.

Let us also mention that this calculation could be generalized to other random matrix models, in particular
the complex matrix model, which presents many similarities with the 2-matrix model. The gaussian complex
matrix model has attracted lot of attention in string theory. A particular case of the ADS/CFT, is the
conjectured duality between string-theory in a pp-wave background, and BMN gauge theory. The gaussian
complex-matrix model appears as an effective BMN theory in a particular limit, and the computation of mixed
correlation functions is very important in that model [1, 9]. In the gaussian complex matrix model, a formula is
known for the 2-point mixed correlator 〈Tr 1

x−M
1

y−M† 〉, but little is known for other mixed correlation functions.

A Equivalence of eq. (2-6) and (2-15)

In this appendix we prove that the two formulæ (2-6) and (2-15) are equivalent. To this end we start from
(2-15) and compute

〈|Uji|2〉U(N) =
−1

∆(X)∆(Y )

det
[(

(x` − xi)(ym − yj)− 1
)

ex`ym
]
`,m=1...N∏

`6=i
(x` − xi)

∏
`6=j

(y` − yj)
= (A-1)

=
−1

∆(X)∆(Y )

∑
ρ∈SN

ε(ρ)
e
∑
x`yρ(`)∏

` 6=i
(x` − xi)

∏
`6=j

(y` − yj)

N∏
`=1

(
(x` − xi)(yρ(`) − yj)− 1

)
= (A-2)
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=
−1

∆(X)∆(Y )

∑
ρ∈SN

ε(ρ)
(−1)Ne

∑
x`yρ(`)∏

` 6=i
(x` − xi)

∏
`6=j

(y` − yj)

N∏
`=1

(
1− (x` − xi)(yρ(`) − yj)

)
= (A-3)

=
1

∆(X)∆(Y )

∑
ρ∈SN

ε(ρ)
(−1)N+1e

∑
x`yρ(`)∏

` 6=i
(x` − xi)

∏
`6=j

(y` − yj)
(A-4)

[
1−

N∑
`=1

(x` − xi)(yρ(`) − yj) +
∑
`1<`2

(x`1 − xi)(yρ(`1) − yj)(x`2 − xi)(yρ(`2) − yj) + . . .

]
= (A-5)

1
∆(X)∆(Y )

∑
ρ∈SN

ε(ρ)
(−1)N+1e

∑
x`yρ(`)∏

` 6=i
(x` − xi)

∏
` 6=j

(y` − yj)

[
1 +

N∑
n=1

(−1)n
∑

`1<`2<...<`n

n∏
k=1

(x`k − xi)(yρ(`k) − yj)

]
= (A-6)

1
∆(X)∆(Y )

∑
ρ∈SN

ε(ρ)
(−1)N+1e

∑
x`yρ(`)∏

` 6=i
(x` − xi)

∏
` 6=j

(y` − yj)

[
1 +

N∑
n=1

(−1)n
∑

`1<`2<...<`n
`k 6=i,ρ(`k) 6=j,∀k

n∏
k=1

(x`k − xi)(yρ(`k) − yj)

]
(A-7)

Let us consider the following subexpression from the above formula

(−1)N+1∏
` 6=i

(x` − xi)
∏
` 6=j

(y` − yj)

[
1 +

N∑
n=1

(−1)n
∑

`1<`2<...<`n
`k 6=i,ρ(`k) 6=j,∀k

n∏
k=1

(x`k − xi)(yρ(`k) − yj)

]
(?)
= (A-8)

= (−1)N+1

 1∏
` 6=i

(x` − xi)
∏
` 6=j

(y` − yj)
+
N−1∑
n=1

(−1)n
∑

`1<`2<...<`n
`k 6=i,ρ(`k) 6=j,∀k

n∏
k=1

(x`k − xi)(yρ(`k) − yj)∏
`6=i

(x` − xi)
∏
`6=j

(yρ(`) − yj)

 = (A-9)

= (−1)N+1

 1∏
` 6=i

(x` − xi)
∏
` 6=j

(y` − yj)
+
N−1∑
n=1

(−1)n
∑

`1<`2<...<`n
`k 6=i,ρ(`k) 6=j,∀k

1∏
` 6∈{i,`k,∀k}

(x` − xi)
∏

ρ(`) 6∈{j,ρ(`k),∀k}

(yρ(`) − yj)

 = (A-10)

=

 (−1)N+1∏
` 6=i

(x` − xi)
∏
` 6=j

(y` − yj)
+
N−1∑
n=1

(−1)N−n+1
∑

i1<...<iN−n:

i∈{ik},j∈{ρ(ik)}

1∏
k:ik 6=i

(xik − xi)
∏

k:ρ(ik) 6=j

(yρ(ik) − yj)

 =(A-11)

=

 (−1)N+1∏
` 6=i

(x` − xi)
∏
` 6=j

(y` − yj)
+
N−1∑
n=1

(−1)n+1
∑

i1<...<in:
i∈{ik},j∈{ρ(ik)}

1∏
k:ik 6=i

(xik − xi)
∏

k:ρ(ik) 6=j

(yρ(ik) − yj)

 =(A-12)
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=


N∑
n=1

(−1)n+1
∑

i1<...<in:
i∈{ik},j∈{ρ(ik)}

1∏
k:ik 6=i

(xik − xi)
∏

k:ρ(ik) 6=j

(yρ(ik) − yj)

 =(A-13)

(??)
=


N∑
n=1

(−1)n+1
∑

i1<...<in

n∑
s=1

(−1)sδi,is∆(xi1 , . . . , x̂is , . . . xin)
n∑
s=1

(−1)sδj,ρ(is)∆(yρ(i1), . . . , ŷρ(is), . . . yρ(in))

∆(xi1 , . . . , xin)∆(yρ(i1), . . . , yρ(in))

 =(A-14)

=
N∑
n=1

(−1)n+1
∑

i1<...<in

det


1 · · · 1
xi1 · · · xin+1

...
...

xn−1
i1

· · · xn−1
in+1

δii1 · · · δiin+1



det


1 · · · 1
xi1 · · · xin+1

...
...

xni1 · · · xnin+1



det


1 · · · 1

yρ(i1) · · · yρ(in+1)

...
...

yn−1
ρ(i1) · · · yn−1

ρ(in+1)
δjρ(i1) · · · δjρ(in+1)



det


1 · · · 1

yρ(i1) · · · yρ(in+1)

...
...

ynρ(i1) · · · ynρ(in+1)


(A-15)

In the above chain of equality we have replaced (after the (?)) the upper limit of summation by N − 1 because
in the case n = N there is certainly one `k equal to i (and one ρ(`k) equal to j) so that that term does not
contribute. After (??) we have removed the condition on the multi-index because it is implicit in the sum of
deltas that follows. Putting together eq. (A-15) with eq. (A-7) or (2-15) we obtain the desired proof of the
equivalence of formula (2-6) with eq. (2-7), thus also proving the former rigorously, which was not done in [16].
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