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Cluster methods for strongly correlated electron systems

Giulio Biroli and Gabriel Kotliar
Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854

~Received 19 June 2001; revised manuscript received 20 December 2001; published 1 April 2002!

We develop, clarify, and test various aspects of cluster dynamical mean field methods using a soluble toy
model as a benchmark. We find that the cellular dynamical mean field theory~CDMFT! converges very rapidly
and compare its convergence properties with those of the dynamical cluster approximation. We propose and
test improved estimators for the lattice self-energy within CDMFT.
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The development of dynamical mean field methods
resulted in significant advances in our understanding
strongly correlated electron systems, in particular in the a
of the Mott transition.1 This method captures the local effec
of correlations such as the Kondo effect and the transfe
spectral weight between the coherent and the incoherent
of the spectral function. It suffers, however, from limitatio
arising from its single site mean field character such as
lack of k dependence of the self-energy. Natural general
tions of statistical mechanical approaches to the area
quantum interacting systems, such as the Bethe-Peierls
proximation and various cluster mean field theories, h
been investigated recently.1–4,6,8This area of investigation is
in its beginning stages, and comparative studies of the v
ous methods are important to increase our understandin
their strengths and their limitations, at a level comparable
our present understanding of the single site dynamical m
field theory. It is worth pointing out that in the context o
disordered system, the dynamical mean field theory redu
to its precursor: the famous coherent potential approxima
~CPA!. Cluster extensions of the CPA~Ref. 7! bear the same
relation to CDMFT, while the pair CPA is related to th
approaches of Refs. 1,3. We focus, here on the CDMFT~Ref.
6! and the DCA~Ref. 2! methods, because both have be
proved to be manifestly causal, i.e., the output of an appr
mated solution of the cluster equations is causal, as long
causal method is used for the solution of the impurity mod
We test their performance in a simple soluble model that w
introduced by Affleck and Marston.5 It has ak dependent,
albeit static, self-energy, and therefore is a simple pl
ground to explore the cluster method without using the he
and not very precise quantum Monte Carlo method to so
the impurity problem. This advantage is somewhat balan
by the fact that there is nov dependence in the self-energ
contrary to the usual physical case.

Our paper is divided in three parts. In the first part w
describe the CDMFT,6 and introduce a real space formul
tion of the DCA equations. The DCA equations were ori
nally formulated in momentum space, the real space form
lation is introduced to facilitate the comparison with t
CDMFT cluster scheme and to gain further intuition into th
method. Moreover we compare the predictions of DCA a
CDMFT for the short distance behavior of correlation fun
tions for different cluster sizes against the exact solution
the second part we focus on the lattice self-energy. In
CDMFT approach the lattice self-energy is a derived qu
0163-1829/2002/65~15!/155112~5!/$20.00 65 1551
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tity which needs to be estimated from the cluster self-ene
an auxiliary quantity which enters the dynamical mean fi
equations. In this paper we provide improved estimators
the lattice self-energy and discuss how they improve the c
vergence to the exact answer as a function of the cluster s
In the third part we explore alternative schemes for estim
ing physical quantities from a DCA and a CDMFT cluste
For the DCA clusters we confirm that the original DCA pr
scription gives the best results. Whereas for the CMD
method we find that all estimators give excellent estimate
local quantities because of the existence of an underly
cavity construction.

Real space formulation the cluster schemes. A fairly gen-
eral model of strongly correlated electrons contains hopp
and interaction terms. It is defined on a lattice ofLd sites in
d dimensions, and we divide the lattice in (L/Lc)

d cubic
clusters ofLc

d sites~more general forms can also be cons
ered!. We denote withei the internal cluster position an
with Rn the cluster position in the lattice~therefore the po-
sition of thei th site of thenth cluster isRn1ei). The lattice
Hamiltonian is expressed in terms of fermionic operat
f Rn ,a

† and f Rm ,b and can be written as

H5 (
n,a,m,b

ta,b~Rn2Rm! f Rn ,a
† f Rm ,b

1 (
n,a,m,b,n8,a8,m8,b8

Ua,b,a8,b8~$R%!

3 f Rn ,a
† f Rm ,b f Rn8 ,a8

† f Rm8 ,b8 . ~1!

a5 i , s, ands is an internal degree of freedom~i.e., a spin,
spin orbital, or band index!. Most cluster schemes neglect th
interaction terms between different clusters. The effects
those interactions, can be treated using the extended dyn
cal mean field approach8 but we will not discuss these im
provements in this paper. All the different cluster schem
can be formulated as a self-consistent equation for the clu
self-energy which consist of the following loop:~i! Start with
a guess of the cluster self-energy (Sc)a,b , ~ii ! from the clus-
ter self-energy compute the Weiss function or host clus
propagator (G0)a,b , which enters in the effective action fo
the cluster degrees of freedom,~iii ! use the effective action
compute the cluster Green function (Gc)a,b , ~iv! compute
the new cluster self-energy,~v! iterate this loop until the
convergence is reached. The DCA and CDMFT schemes
©2002 The American Physical Society12-1
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GIULIO BIROLI AND GABRIEL KOTLIAR PHYSICAL REVIEW B 65 155112
fer in the way step~ii ! is carried out. Within the CDMFT one
obtains the Weiss function from the cluster self-energy by
equation

Ĝ0
215F S Lc

L D d

(
K

1

~ ivn1m!Î2 t̂~K !2Ŝc
G21

1Ŝc , ~2!

wheret(K )a,b is the Fourier transform of the hopping matr
in Eq. ~1! with respect toRn2Rm (k is a wave vector in the
Brillouin zone reduced byLc in each direction!, vn is the
Matsubara frequency, andm is the chemical potential. Onc
the Weiss function has been computed one can obtainĜc by
functional integration of the single site action. Step~iv! is
carried out using the definition of the cluster self-energyŜc

5Ĝ0
212Ĝc

21 .
To facilitate the comparison with the CDMFT, in the fo

lowing we shall derive the DCA scheme using the real sp
formulation of the cluster. To lighten the notation we w
assume that the variables is conserved to make all th
cluster matrices diagonal ins and subsequently we will drop
this index. We take periodic boundary condition on the cl
ter and we define the matrixUi , j (K )5exp(2iK•ei)dei ,ej

.

It is crucial for the following to note that the matrixt̂ (K )
has the following representation: t(K ) i , j

5(1/Lc
d)(kc

ei (K1kc)(ei2ej )t(K1kc), wherekc are the cluster

momenta. Therefore the matrixÛ(K ) t̂ (K )Û†(K ) is diagonal
with respect to cluster momenta@Û(K ) t̂ (K )Û†(K )# i , j

5(1/Lc
d)(kc

eikc(ei2ej )t(K1kc). Using this property one can
write the ~ii ! DCA equation in real space as

Ĝ0
215F S Lc

L D d

(
K

1

~ ivn1m!Î2Û t̂ Û†~K !2Ŝc
G21

1Ŝc .

~3!

Since the matricesÛ t̂ Û†(K) and Ŝc are diagonal with re-
spect tokc , this equation coincides with the DCA equatio
of Jarrell et al.2 after a Fourier transformation with cluste
momenta. OnceĜ0 is known,Ĝc is computed by functiona
integration of the cluster effective action and the new clus
self-energy is obtained bySc(kc)5G0

21(kc)2Gc
21(kc).

Equation~3! allows a direct formulation of DCA in rea
space and a detailed comparison with CDMFT. We also n
this real space formulation can be used to defined m
causal cluster schemes, by introducing a different ma
U(k) in the previous equation.

A simplified one-dimensional large-N model: comparis
between the exact solution and the predictions of the clu
schemes. In the following we focus on a simple one
dimensional model, originally introduced and studied by A
fleck and Marston5 in two dimensions. We compare the DC
and CDMFT schemes to its exact solution. This model i
generalization of the Hubbard-Heisenberg model where
SU~2! spins are replaced by a SU(N) spin, the on site repul-
sion is scaled as 1/N and the large N limit is taken. Its
Hamiltonian reads
15511
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H52t(
i ,s

~ f i ,s
† f i 11,s1 f i 11,s

† f i ,s!

1
J

2N (
i ,s,s8

~ f i ,s
† f i ,s8 f i 11,s8

† f i 11,s

1 f i 11,s
† f i 11,s8 f i ,s8

† f i ,s!, ~4!

wherei 51, . . . ,L ands51, . . . ,N and we take the largeL
and N limits. In the following we will useJ as the unit of
temperature and therefore we putJ51 and we rescale the
hopping termt→t/J. The thermodynamics of this model ca
be solved exactly since in the largeN limit the quantityx
5(1/N)(s f i ,s

† (t) f i 11,s(t) does not fluctuate. Indeed Eq.~4!
reduces to a free-fermion Hamiltonian with a ‘‘renorma
ized’’ hopping termt→t1x and a self-consistent conditio
on x:

x5
1

L (
k

f ~bEk!cosk, Ek522~ t1x!cosk1m, ~5!

wherem is the chemical potential,f (bEk) is the Fermi func-
tion, andb is the inverse temperature.

We now apply the DCA approximation to the Hamiltonia
~4!. As previously, the computation is simplified by the fa
that the quantityxcl

DCA5(1/N)(s f i ,s
† (t) f i 11,s(t), where i

andi 11 belong to the same cluster, does not fluctuate in
large-N limit. As a consequence the functional integral o
the cluster degrees of freedom reduces to a simple Gaus
integral. Thus, imposing periodic boundary condition on t
cluster, the equationG 21(kc)5Gc

21(kc)1Sc(kc) implies
Sc(kc)52xcl

DCAcoskc . Using the second DCA equatio
which expresses the cluster Green function as a function
Sc(kc), we obtain the self-consistent DCA relation forxcl

DCA :

xcl
DCA5

1

L (
K,kc

f ~bEK,kc
!coskc ,

EK,kc
522t cos~kc1K !22xcl

DCAcoskc1m. ~6!

Note that in the infinite cluster limit one recovers the exa
equation~5!.

Now we focus on the CDMFT approximate solution. A
in the DCA case, since the quantity (xcl

CDMFT) i

5(1/N)(s f i ,s
† (t) f i 11,s(t) does not fluctuate, one obtain

(Sc) i , j5(xcl
CDMFT) id i , j 211(xcl

CDMFT) jd i , j 11. This is the gen-
eralization of the corresponding DCA expression to a c
without periodic boundary condition. Note that now th
quantity (xcl

CDMFT) i may depend on the cluster index. Deno

ing the eigenvectors and the eigenvalues of the matrit̂

1Ŝ, respectively,c i
n(K) andln(K) (n51, . . . ,Lc), the ~ii !

CDMFT equation, which expresses the cluster Gre
function in terms of the cluster self-energy, reads

~Gc! i , j5
Lc

L (
K,n

c i
n~K !~c j

n~K !!*
1

ivn1m2ln~K !
. ~7!
2-2
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CLUSTER METHODS FOR STRONGLY CORRELATED . . . PHYSICAL REVIEW B65 155112
Using this expression we finally get the self-consist
CDMFT equation on (xcl

CDMFT) i :

~xcl
CDMFT! i5

Lc

L (
K,n

c i
n~K !@c i 11

n ~K !#* f ~bEK,n!,

EK,n5m2ln~K !. ~8!

Notice that Eq.~8! corresponds to the exact solution of
model defined by a Hamiltonian similar to Eq.~4! in which
Ji ,i 11 equals 1 ifi and i 11 belong to the same cluster an
zero otherwise. This implies in particular that in the infin
cluster limit the CDMFT approximation gives back the exa
solution. We have numerically solved the self-consist
equations~5!, ~6!, ~8! to compare the DCA and CDMFT
predictions for different cluster sizes to the exact solution

In Fig. 1 we plot the result of this analysis fort51, m
51 as a function ofb and for different cluster sizes. The tw
methods converge~the convergence is not uniform inb)
toward the exact solution for high enoughLc but CDMFT
converges better that DCA. Indeed the CDMFT results
already surprisingly good forLc52. However, as we shal
discuss below, there are two different ways to computex
within the cluster methods. The one used here is based
real space cluster intuition. The second one, relies on a
mentum space intuition and computes the correlation fu
tions from thek-dependent lattice Green’s function. This pr
cedure is the one proposed in Ref. 2 and we will show t
indeed it gives accurate results for small clusters.

The lattice self-energy.We now address the computatio
of the lattice self-energy. In DCA a discretized form of th
lattice self energy in momentum space enters directly in
evaluation ofG0. On the other hand, CDMFT focuses o
estimating the cluster Green function, and the lattice s
energy does not participate in the mean field equations,
has to be estimated later from the cluster self-energy. For
simplified large-N one-dimensional model studied in this p
per the DCA prediction for the lattice self-energy reads

FIG. 1. x as a function ofb for m51 andt51. The points are
the exact solution. The lines arexcl

DCA for Lc52,5,10 andxcl
CDMFT

for Lc52,3,4.
15511
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S latt
DCA~k!5S~kc!52xcl

DCAcoskc , ~9!

where k belongs to@2p/Lc1kc ,kc1p/Lc#. Whereas for
CDMFT an estimator for the lattice self-energy is co
structed using the matrixSRn ,a; i5dRn1a,i where a is the
internal cluster index andi denotes a lattice site. The sim
plest form6 is S latt

CDMFT(k)5(a,bS̃a
†(k)Sa,bS̃b(k), where

S̃a(k) is the Fourier transform of the matrixSwith respect to
the original lattice indexi. S̃a(k) can be easily written in
terms of the matrix Û(k) defined before: S̃(k)a

5Ua,a(k)/ALc. Therefore the relationship between the la
tice and the cluster self-energy readsS latt

CDMFT(k)
5(a,b@U†(k)ScU(k)#a,b /Lc . For example, in the case o
the two site cluster we findS latt

CDMFT(k)5xcl
CDMFTcos(k),

whereas the exact solution givesS latt(k)52xexcos(k). As a
consequence, even if the value ofx is well predicted by the
CDMFT there is a factor 2 between the two self-energi
The reason of this discrepancy may be understood wri
the simple estimator of the lattice self-energy6 in real space
(S latt) i 2 j5(a,b:a2b5 i 2 j (Sc)a,b /Lc . This means that the
lattice self energy for a certain value ofi 2 j is obtained
averaging over all the cluster self-energy elements co
sponding toa2b5 i 2 j . In the limit of an infinite cluster
translation invariance implies that the cluster self-energy
incides with the lattice self-energy in the bulk. Therefore t
factor 1/Lc cancels and we get the exact solution. Howev
for a finite lattice there are onlyLc21 factors fori 2 j 51,
Lc22 factors for i 2 j 52, . . . ,Lc2k factors for i 2 j 5k.
Therefore it is highly desirable to have improved estimat
for smaller size clusters in which the formula in which th
average over all the factors havinga2b5k is weighted by
their number 1/(Lc2k). One could also think to put an extr
weight to extract the lattice self-energy only from the sites
the bulk, for which the CDMFT result should be better. W
propose new general class of estimators for the lattice s
energy in terms of the cluster self-energy, that inherit
causality property:

~S latt! i 2 j5 (
a,b:a2b5 i 2 j

wa,b~Sc!a,b , ~10!

where the matrix wa,b is positive definite and
(a,b:a2b5 i 2 jwa,b→1 for Lc→` ~this guarantees a goo
behavior in the infinite cluster limit!. Using that the trace of
the product of two positive definite matrices is positive, o
can easily prove that if the cluster self-energy is causal
formula produces a lattice self-energy which is also cau
Note that Eq.~10! does not change the behavior for an in
nite cluster, but can really improve the results for finite clu
ter sizes. For example, in Fig. 2 we compare the exact lat
self-energy to the DCA and the CDMFT predictions@using
the initial estimator proposed in Ref. 6 and the simple i
provementwa,b51/(Lc21) which weights in the right way
at least the terms witha2b51# for b5m5t51. We re-
mark that there is an excellent agreement between CDM
and the exact solution after that our simple improvement
2-3
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GIULIO BIROLI AND GABRIEL KOTLIAR PHYSICAL REVIEW B 65 155112
been taken into account already forLc52. Whereas the pre
diction of the corresponding estimator from the DCA clus
becomes accurate forLc>5.

Relation between lattice and cluster observables.Once
the lattice self-energy has been obtained within a clu
method, the lattice Green function can be straightforwar
computed. This offers a different way of estimating the fi
neighbor correlation functionx, using the lattice Green func
tion. This quantity can be computed inside the cluster (xcl)
or using the lattice Green function, obtained by the latt
self-energy, (x la) and the two results do not coincide in ge
eral. In the case of CDMFT one can understand what are
approximations responsible for this difference and why th
are small. The CDMFT approach is based on the ca
procedure6 which, if it was carried out exactly, it would give
back the same answer for the lattice and cluster observa
However, in the approximated cavity procedure adopted
the CDMFT, one assumes that the contribution to the eff
tive action coming from tracing out all the degrees of fre
dom outside the cluster is purely Gaussian. This is clea
not the case in general and it is the main reason for
noncoincidence of lattice and cluster observables.

In Fig. 3 we compare the DCA and CDMFT prediction
for the lattice and cluster values ofx to the exact solution for
a two site cluster, fort51,m51 as a function ofb. These
curves display the typical behavior found also for other v
ues of the control parameters:x la

DCA is quite better than its
cluster counterpart, whereas the CDMFT prediction is qu
stable. This is probably the result of having an approxim
cavity construction for the CDMFT.6 Moreover we remark
that x la

CMDT2 , obtained using the first improvement for th
self-energy discussed above, almost coincides with the e
solution. Comparing the CDMFT and the DCA lattice valu
of x we note that CDMFT gives usually a little bit bette

FIG. 2. Lattice self-energy predicted by the different metho
compared with the exact solution~triangles! for t5b5m51. The
dotted line is the result of the CDMFT estimator in Ref. 6, where
the continuous line is the result of the first improvement discus
in this paper. The dashed, long dashed, and dot dashed lines
respectively, the DCA results forLc52,5,10.
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answer in terms of accuracy and convergence with respe
cluster size. This is perhaps due to the smoothness of
self-energy in the CDMFT case.

It would be nice to eliminate the cluster self-energy al
gether from the CDMFT approach or to use a self-ene
without discontinuities in DCA, in the spirit of the work o
Katsnelson and Lichtenstein.4 However, we were unable to
prove manifest causality of this approach.

In summary, in this short paper we compared the per
mance of the DCA method with that of the cellular DMFT,
a very simple toy model. We have also proposed new e
mators for the lattice self-energy within CDMFT, which a
more efficient. Our study shows that a direct application
CDMFT, i.e., without exploiting the flexibility inherent in the
choice of basis~present in its most general formulation! is
very efficient in converging to the correct solution alrea
for a two site cluster. Comparing the DCA and the CDMF
predictions we find that CDMFT ones are a little bit better
terms of accuracy and convergence with respect to clu
size. DCA estimates of physical quantities, are most ac
rately carried out using the lattice Green function, and
from the real space cluster correlation functions. This
stressed in Ref. 2, where DCA is viewed as a moment
space method. Concerning local quantities, CDMFT is no
sensitive to the choice of cluster or lattice estimators,
cause of the underlying cavity construction present in
derivation.6 These results are very encouraging, and warr
further applications of these methods to more realistic a
difficult problems. Since the most glaring deficiency of t
CDMFT method is that it does not attempt to take into a
count in a direct fashion the translation invariance of t

s

s
d
re,

FIG. 3. x as a function ofb for m51 andt51. The points are
the exact solution. The lines are, from top to bottom:xcl

DCA ~dashed
line!, x la

DCA ~long-dashed line!, xcl
CDMFT ~dot-dashed line!, x la

CDMFT2

~continuous line!, x la
CDMFT1 ~dotted line!. x la

CDMFT1 is the result ob-
tained using the CDMFT estimator for the lattice self-energy in R
6 whereasx la

CDMFT2 corresponds to the first improvement discuss
in this paper.
2-4
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problem, we concentrated on the phase of this model~finite
temperatures! which is translationally invariant. We expec
that CDMFT will perform even better for the ground sta
properties since in this case translation invariance is bro
by dimerization.
ev

y,
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