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Analysis of directed flow from elliptic flow
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The directed flow of particles produced in ultrarelativistic heavy ion collisions at the CERN Super Proton
Synchrotron and the Brookhaven Relativistic Heavy lon Collider is so small that currently available methods
of analysis are at the border of applicability. Standard two-particle and flow-vector methods are biased by large
nonflow correlations. On the other hand, cumulants of four-particle correlations, which are free from this bias,
are plagued by large statistical errors. Here, we present a new method based on three-particle correlations,
which uses the property that elliptic flow is large at these energies. This method may also be useful at
intermediate energies, near the balance energy where directed flow vanishes.
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I. INTRODUCTION lations due to global momentum conservation are well
known[12], and a systematic method to correct for this ef-
The azimuthal angles of particles emitted in a heavy iorfect has recently been proposgi8]. However, many other
collision are correlated with the direction of the impact pa-effects are expected to produce nonflow correlations of the
rameter(reaction plang of the two incoming nuclei. This Same order of magnitude, such as quantum Hanbury Brown—
correlation is characterized by the Fourier coefficients of thelwiss correlation$14] and resonance decayt5]. We have

particle azimuthal distributiony,, [1], proposed new methods, based on higher-order correlations
[16,17, which allow one to get rid of nonflow correlations.
vn=(cogn(¢—Pr)1), (1)  However, statistical errors on four-partidler higher-order

correlations are larger, so that these methods may fail if flow

wheren is an integer¢ denotes the azimuthal angle of an iS too small. .
outgoing particle®g, is the azimuth of the reaction plane, !N this paper, we propose a new method that is free from
and angular brackets denote an average over events and o@gse limitations. It allows one to obtain an estimatey of

window. errors usually not much larger than with standard techniques.

The first Fourier coefficient,, referred to asdirected  1his method is based on the observation that elliptic flow

flow, is usually positive in the forward hemisphere for pro- (v2, second Fourier harmonic of the azimuthal distribution

tons. This is because particles are deflected away from thi§ reasonably large in the situations considered where di-

target. This effect was first observed at Bevalac in 184  rected flow is hard to measure; is roughly 3% at SP§6],

and reaches its maximum value at about 400 MeV pe@nd even larger at RHIC18]. Our method relies on the

nucleon[3]. At much lower energies, below 100 MeV per _measurement of three-particle azimuthal correlations, which

nucleon,v; becomes negative due to the attractive nucleafvolve bothv, andv,,

mean field4,5]. At ultrarelativistic energies, it decreases: at <ei(¢1+¢2—2¢3)>:(v )20 ()

the CERN Super Proton Synchrotr@®PS, it is of the order vt

of 2% [6]. At the Brookhaven Relativistic Heavy lon Col- where¢,, ¢,, and ¢ denote azimuthal angles of three par-

lider (RHIC), it has not been measured yet. Accurate meaticles belonging to the same event, and the average runs over

surements ob, are important since this quantity is a sensi- triplets of particles emitted in the collision, and over events.

tive probe of nuclear matter properti¢g]. There is an This equation yieldsu(;)%v,, and one then deduces once

interesting prediction that this quantity may even become , has been obtained from a separate analysis.

negative above SPS energ[&3. The idea of mixing two Fourier harmonics is not new.
Standard methods for analyzing directed flf8v11] are  Similar three-particle correlations were already considered in

based on the assumption that all azimuthal correlations beRef. [19]. They also underly measurements of elliptic flow

tween outgoing particles are due to flow. When flow be-relative to the event plane determined from directed flow

comes too small, however, other sources of correlatiori20]: in these analyses, one first obtains and therv, from

(“nonflow” correlations) can no longer be neglected. Corre- an equation similar to Eq2). In particular, this is the only

method to obtain the sign af,, and it was used for this
purpose at SP§5,21]. Here we propose to do the other way

*Electronic address: Nicolas.Borghini@ulb.ac.be round: first measure,, then obtainv, from the three-
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the practical implementation of the method. This implemen-correlations, as was shown explicitly in the case of the cor-
tation makes use of two techniques already introduced imelation due to momentum conservation in Réf3].

Refs.[17,22: first, a cumulant expansion allows us to elimi- It is straightforward to generalize E(B) to higher-order
nate the effects of azimuthal asymmetries in the detector agorrelations, such as the four-particle correlation,
ceptance; second, the formalism of generating functions pro- (6l(br+ b2 da=da)y = ()%, (4)

vides an elegant way of constructing three-particle

correlations (and beyonyl with a computer time which where the average now involves all possible quadruplets of

grows only linearly with the number of particles involved, particles belonging to the same event. This result will be

while taking into account all possible particle triplets. A gen-used below.

eralization to higher-order cumulants is presented in Sec. IV. In this paper, we shall be concerned with yet another type

Our results are discussed in Sec. V. of correlation, namely, a three-particle correlation which
mixes the first two Fourier harmonics,

IIl. PRINCIPLE AND ORDERS OF MAGNITUDE (ell917927209)) = (gl(417 PRl (P27 PRI (PR 43))

— 2
In this section, we compare three methods of analyzing =(v1)v,. ®)

partiCle CurT]uIZi_nt, and the three.'partide mixed Correlationthree_partide correlation EC(S) allows one to extract an
Eq. (2), which is the focus of this paper. In Sec. Il A, we estimate ofy ;.

recall howv ; can be obtained from azimuthal correlations in

various ways. In Secs. Il B and Il C, we estimate for each B. Nonflow correlations

method the order of magnitude of errors due to nonflow cor- The apove estimates were derived under the assumption
relations and finite statistics. Numerical estimates are givefhat all azimuthal correlations are due to flow. However,
in Sec. 11 D, where we show that three-particle correlationshere are also other, “nonflow,” contributions to azimuthal
provide the mostif not only) reliable way of analyzing di- correlations due to various effedi¢1,14,15. Let us recall
rected flow at ultrarelativistic energies. In Sec. Il E, we fi- the order of magnitude of these correlations by tak|ng a
nally explain how to perform detailed measurement pfis  simple example: if a resonance decays ikfearticles, these

a function of transverse momentum and rapidity with thisk particles will be strongly correlated by the decay kinemat-
method. ics. Now, the probability thak arbitrary particles seen in a
detector originate from the same resonance scales like the
total multiplicity M of the event like %", This is gener-

ally the order of magnitude of the genuikeparticle corre-

In a given collision, the azimuth of the reaction plabg  |ation due to nonflow effects. In particular, the two-particle
is unknown, so that the Fourier coefficients of the azi-  nonflow correlation is of the order of W, so that Eq.(3)
muthal distribution, defined in Eql), can only be obtained reads in fact
from azimuthal correlations between the outgoing particles.

A. Directed flow from azimuthal correlations

The simplest way is to use correlations between two particles (1= do)\ 2 1
[10], labeled 1 and 2, belonging to the same event, (1772 =(v)*+ 0 M/ 6)
(el(P17 92y = (g1~ PRIGH (PR~ 42)) Whenv, becomes smaller than+I¥, the resulting error on

v, due to the unknown nonflow term becomes as large;as
itself. This is probably the case at SPS, as shown in Ref.
=(v1)? (3)  [15], anda fortiori at RHIC energies.
A similar reasoning applies to higher-order correlations.
. . _ In the case of the four-particle correlation, E4), it may for

where, as in the previous equations, averages are taken ovi@tance happen that two pions labeled 1 and 3 originate
pairs of particles and over events. In going from the first tofom the same meson, while 2 and 4 come from another
the second line, we have assumed that all azimuthal correlgneson. This gives a four-particle correlation of order
tions are due to flow, i.e., that azimuthal angles relative to th@y(1/m)2. However, these pairwise correlations can be sub-
reaction planep, —®g and ¢, —dg are independent. The tracted from the measured four-particle correlation so as to
“standard” flow analysig 9] proceeds differently: one corre- jsojate the genuine four-particle correlation. This is the prin-
lates the azimuth of an individual particle with a “flow vec- ¢jple of the cumulant expansion that was proposed in Refs.
tor” obtained by summing over many particles. This corre-116 17 to get rid of nonflow correlations in the flow analy-
lation is larger than the correlation between two individualsjs, The cumulant of the four-particle correlation is defined
particles, typically by a factor of M, whereM is the number as
of particles involved in the flow vector. However, the flow-
vector method and the two-particle method are essentially

= <ei(¢’1*‘1)R)><ei(¢R* '/’2)>

<<ei(¢1+ b= 3~ 4’4)»

equivalent, inasmuch as both suffer from the same limita- = (g(41+ b2 93— )y — (g1 99 (g2~ 9))
tions, due to nonflow correlations: the enhancement factor
VM applies to the flow correlation as well as to nonflow — (&1 Py (gl (P2 a)y, )
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According to the above discussion, the contribution of nonFinally, in the case of three-particle correlations, there are
flow effects to this genuine four-particle correlation is of M(M—1)(M—2)/2 independent triplets, so thaN
order 1M3, much smaller than M?2. The contribution of  ~N,M?3/2.

flow follows in a straightforward way from Eq$3) and(4), One thus obtains the following expressions for the relative
so that one may finally write statistical errors on the various estimates f

. ) dv {2} _ 1 1

V1 ZVNevts(Ul\/M)Z’

M3

<<ei(¢1+¢2*¢3*¢4)>>= — (v1)4+ O

Finally, let us estimate nonflow contributions to the mixed
three-particle correlation, Eq5). Unlike the four-particle
correlation Eq(4), this quantity does not receive any contri- dvi{4l 1 1
bution from two-particle correlations, since quantities such v 9N 4’
as(e'(#1+92)) or (¢!(?17243)) vanish by symmetry. The only o 2News (2VM)
nonflow correlation is the genuine three-particle correlation,
of order 1M?, and Eq.(5) becomes

Sv4{3} 1 1

i) (9) U1 _ZVNevts(Ul\/M)z(UZN).
5|

(11)

In the following, we shall denote by,{2}, v,{4}, and  These estimates are correct as long agM andv,\M are
v.{3} the estimates of; obtained from Eqs(6), (8), and  not larger than unity, otherwise correlations due to flow must
(9), respectively, ignoring the nonflow term. Using thesebe taken into account in the calculation of statistical errors
equations, one finds that the differences due to nonflow coi17]. A more accurate formula fofv {3} will be given be-
relations between these estimates and the exact valage  low in Sec. Il D.
of order In this paper, we are interested in the situation where di-

rected flow is very smally; /M <1, which is the case when
vi{2)—v,= O(i) the standard flow analysis fails due to large nonflow correla-
Muvq/’ tions (see Sec. Il B In that case, one sees that the statistical
uncertainty orv {4}, i.e., the estimate from the fourth-order
cumulant, is much larger than the error on the standard esti-
, matev,{2}. On the other hand, if elliptic flow is significantly
large,v,+/M is not much lower than unity: in such a case, the
1 mixed-correlation technique provides an estimate pfvith
01{3}_01:@(—)_ (10 a statistical error of the same order as the standard analysis,
(Mvy)(Mu3) but which is much less biased by nonflow correlations.

U1{4}_1}1:0

(le)3

As explained in Ref[16], it is possible to measure, only if

lv_lz_;n>1, and we assume throughout this paper that this con- D. Orders of magnitude at SPS and RHIC

dition holds both forv; andv,. Then, Eq.(10) shows that . . ) .
estimates o, from three- or four-particle correlations are L€t us estimate numerically the various errors discussed

much less biased by nonflow correlations than standard estPoVve in a realistic situation. In practice, evaluating the mag-
mates from two-particle correlations. nitude of nonflow correlations requires a detailed modeling.

Equations (10), strictly speaking, represent scaling laws
rather than orders of magnitude. Detailed studies of various
effects at SPS energi€s3—15 show that the contribution of

In practice, the use of higher-order correlations is limitednonflow correlations t@ ; obtained from the standard analy-
by statistical errors due to limited statistics. The various corsis (which is equivalent t@;{2} abové is of the same order
relations encountered are quantites of the typeasy, itself. For midcentral collisions;, is about 3%[6] and
(1/N)E}\':1005(A¢j), where theA ¢; are various combina- the number of detected particléé~ 300. According to Eq.
tions of the particle azimuths. If the¢; are independent and (10), one expects that using three-particle correlatifres,
randomly distributed, the standard error on such a quantity is;{3}) will reduce systematic errors due to nonflow correla-
1/y/2N. tions by a factor of at leastlv,, that is, a factor of 10. Thus

In the case of two-particle correlations, E), one can  one expects estimates using higher-order correlatiqf3}
constructM (M — 1)/2 different pairs of particles in an event andv {4} to be little biased by nonflow correlations, con-
with multiplicity M, so that the total number of combinations trarily to v,{2}.
is N= N, M?/2 for No €vents. In the case of four-particle ~ Statistical errors can be estimated quantitatively using
correlations, Eq.(4), one can construcM (M —1)(M—2) Egs.(11). Realistic values at SPS ah.,c~ 50k eventsM
X (M —3)/8 independent quadruplets, so that Ng, M /8. =300 particlesp;=2% andv,=3%. One then obtains

C. Statistical errors
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6v4{2} . E. Integrated flow, differential flow
v, =2%, As with other methods, the analysis proceeds in two steps.
One first estimates the average value pbver phase space.
Sv{4} This is done by averaging'(?1*#272¢3) over all possible
0—1216%, triplets, as in Eq(2). However,v,; andv, depend strongly
on rapidity and transverse momentyfor instancey, has
S opposite signs in the backward and forward hemisphehes
v1{3} . .
~4%. (12 practice, one therefore performsv@ightedaverage, and Eq.
U1 (2) becomes
The relative statistical error on,{4} is too large to allow (Wi (1)W1 (2)wy(3)e' (P21t 427243y = (W 1) X(W,pv5),
detailed measurements of as a function op; ory. On the (14

other hand, the uncertainty @n{3} is only twice larger than

the error onv,{2}, while we have seen above that the gainwherew; andw, are weights appropriate to directed flow
on the systematic error due to nonflow correlations is typi-and elliptic flow, respectively, which may be any function of
cally a factor of 10. the particle type, its transverse momentpmand rapidityy.

At RHIC, v, is larger, typically 5% for midcentral colli- In this equationw, (k) is a shorthand fow,(pry.yx). The
sions[18], so that measuring directed flow from elliptic flow right-hand sidgrhs) of Eq. (14) naturally involvesweighted
(v4{3}) is even more appropriate than at SPS. This is reaveragegwuu,), rather tharv, .
flected in both systematic errors due to nonflow correlations, The best choice for the weights is that which leads to the
and in statistical errors. While, is larger than at SP%, is  smallest statistical errors. Repeating the discussion in Sec.
expected to be smaller if one extrapolates the decrease ob-C, one easily shows that this is done by maximizing
served at SPS compared to the Brookhaven Alternating Graw,v )/ (w2). Therefore the best weight is the flow itself
dient SynchrotrofAGS). The number of detected particles [16,23, w,(p7,Y)=v(pT.Y), Wherev,(pt,y) denotes the
M can be estimated using the valueswugf and the event value of the flow in a smallif;,y) bin. In practice, one can
plane resolution given in Reff18], and is similar to that used choose as a first guess the center-of-mass rapidity for di-
above for SPSM=300. rected floww;=y—ycm, and the transverse momentum for

Sincev, is smaller than at SPS, one expects from@€) elliptic flow w,=p+, in regions of phase space covered by
that the bias om,{2} from nonflow correlations will be even the detector acceptance.
worse. However, the decreasedn may be partially com- Using the value of the integratgdnd weighted elliptic
pensated by the increase i3, so that the error om {3} flow (w,v,) obtained from a separate analysis, one finally
remains of the same order. WitNg,=50k events,v;  obtains the integrated directed flojw,v,) from Eq. (14).
=1%, v,=5%, one obtains the following statistical errors: Naturally, one must use the same weightin the reference

analysis that givegw,v,) and in the mixed-correlation

6v4{2} Iy analysis.
v, 9 The second step is to analyze differential flow, i.e., to
obtain values of ; as a function of transverse momentpm
Sv,{4} and/or rapidity y. For that purpose, one averages
=250%, e'($17¢272¢3) gver all ¢, and ¢b3, but restrictsp, to a given
U1 particle type in a particularpy,y) bin,
LT TS 19 (WD) o waoapry):
U1

where we have used the formula derived in Sec. Ill D forNote that there is no weight for the “differential” particle
Sv {3} [herev,\M is of order unity, so that the third of Egs. labeled 1, for which we do not perform any phase space
(11) no longer applies The statistical uncertainty is only average. With the previously derived values(wf,v,) and
50% larger onw.{3} than onv{2}, while once again the (w,v,), one obtains the differential flow,(p;,y). This dif-
gain on the systematic error more than compensates for thérential flowv,(pt,y) will be denoted by in this paper,
loss. while we keep the notation, for the integrated value only.
These numerical estimates show clearly that three-particle
mixed correlations offer the best compromise to measyre
at ultrarelativistic energies. The corresponding estimate
v.{3} is much less affected by nonflow correlations than In this section, we show how to analyze directed flow in
standard two-particle methods. In this respect, it shares theractice using the three-particle correlation method. The
advantages of higher-order estimates such,&4}. In addi-  method proposed here is a straightforward generalization of
tion, v4{3} is much less limited by statistics than the latter, the one introduced in Ref17], which involves the formal-
which would require millions of events at SPS and RHICism of cumulants and generating functions. One may believe
energies. at first sight that this formalism is a useless complication

I1l. IMPLEMENTATION
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here. But in fact, it provides an efficient and elegant solutionWith a realistic detector, however, the cumulant isolates the

to the following problems. physical correlation by subtracting the contribution of detec-
(1) Taking into account azimuthal asymmetries in the de-tor effects. Similarly, the cumulant of the three-particle cor-

tector acceptance, which always exist, even if the detectarelation is defined as

has full azimuthal coverage.

(2) Eliminating correlations due to detector effects. (€!(Prr P27 20a) )= (g!(917 927203)) — (gl(917 P2)) (g7 210a)

(3) Dealing with the combinatorics, i.e., averaging over — (ei1)(g!($2-203)) _ (gid2)(gl(41-23)y
all possible triplets. _ _ _
We define the cumulants in Sec. Il A. The generating +2(e'?1)(e'P2) (e ?193), (17)

functions used in analyzing integrated and differential flow . o )

are introduced in Sec. Il B. Then we give interpolation for- AS in the previous case, this isolates the genuine three-
mulas that can be used to extract the relevant cumulants froR@rticle correlation from effects of detector inefficiencies,
these generating functioriSec. 111 O. Finally, in Sec. Il D, ~ a@nd from spurious correlations induced by detector effects.

we derive the standard statistical errors on both integrated !f the acceptance is almost azimuthally symmetric, then
and differential flow. all acceptance corrections are taken into account automati-

cally by the cumulant expansion: in order to obtain the flow,
one simply need replace the left-hand sities) of Eq. (5) by
the cumulant Eq(17). If detector asymmetries are stronger, a
Even if the detector has full azimuthal coverage, its acmultiplicative factor appears in the rhs of E§) relating the

ceptance is not perfectly isotropic, so that averages(tk®)  correlation to the flow. This correction is derived in
do not strictly vanish. A general way to take into accountthe Appendix.

such effects consists in using cumulants. For instance, the
cumulant associated with the two-particle correlation @4. B. Generating functions
is defined as

A. Cumulants

Generating functions provide an elegant way of summing
(P17 92 )= (el (b1~ P2y — (gl t1) (@~ 142), (16)  over all possiblen-uplets in a given event. For a given event
with M particles seen in the detector, we define the following
If the detector is perfectly isotropic, the last term vanishegeal-valued function of two complex variableag=x;+iy;
and the cumulant reduces to the two-particle correlationandz,=x,+iys:

M . .
w . . w . .
G(zy,z)=|1 |1+ 'l\;lj)(z’l‘e"/’i—kzle'¢i)+%(z§e2'¢’1+zze2"r”j)}
j=1
M . .
wi(]) . wa(]) .
=11 |1+ =g [2xacos )+ 2yssin( ) |+ [ 200824+ 2y5sin(2¢) ], (18)
|
wherez} =x,—iy; andz; =x,—iy, are the complex conju- 242z, _
gates ofz; andz,, respectively, anav,(j) andw,(j) are the (G(z1,25)) ="+ —— <2 el(@itd=2d) ) ...
weights mentioned in Sec. Il E. For sake of simplicity, we M= Akl
drop these weights from now on, unless otherwise stated. (19

The generating functios(z;,2,) generalizes the gener- . ) .
ating functionG,(z) introduced in Ref[17]: the latter in-  1h€ Sum runs over nonequivalent triplets, ije<k. The val-
volved only one Fourier harmonic at a time, while we areUes of (, k, I) are all different, so that autocorrelations are
now mixing two Fourier harmonics. More specifically, we automatically avoided. Since there avf(M —1)(M —2)/2
recover the results of our earlier work in the limiting casesnonequivalent triplets, one obtains for lariye
when eitherz; or z, vanishes:G(z,0)=G;(z), G(0,2)
=Gy(2). zx2
Neither the generating functioB(z,;,z,), nor the com- (G(z,2))="-+—
plex numbersz;, z, have a physical meaning. They are a

formal trick which allows us to extract azimuthal correla- One recognizes here the three-particle correlation (Bj.
tions to all orders, if necessary. This is done by averagingveraged over triplets of particles and over events.
G(z;,z;) over events [we denote this average by In our averaging over events, we have assumed that the

ZZ(ei(¢1+¢2*2¢3)>+ (20

(G(z1,2,))], and then expanding in power serieszef z7 , number of particlesvl is the same for all events. Although
z,, and z; . For instance, the coefficient czl’l"zz2 in the  the method can accommodate small fluctuations of the mul-
expansion is tiplicity M, this is a possible source of errfit7]. Our rec-
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ommendation is the following: in a given centrality bin, Note that in the averaging procedure, an event with two pro-
where the total number of detected particMsg, fluctuates tons is counted twice, while an event with no proton does not
from one event to the other, choosdixed number of par- contribute.

ticlesM <M, to construct the generating function E48). Then we define a generating function of the cumulants for
Although using only a fraction of the total number of par- differential flow, D(z;,z,), by [17,22]

ticles results in a loss in statistics, this avoids the uncon-

trolled effects due to fluctuations in the multiplicity. (61'G(z,,2,))
Note that the generating function previously introduced in D(2y,2)) = (26)
Refs.[17,22 was a function of only one complex varialde (G(z1,2))

Here, we need two independent variabtesand z, because

we are mixing two different Fourier harmonics of the azi- where, in the denominato{G(z;,z,)) denotes an average

muthal distribution. over all events. The cumulants are the coefficients in the
Generating functions are not only a convenient way ofexpansion in power series of this generating function. As in

summing over alh-uplets of particles. They also allow one the case of integrated flow, they are in general complex num-

to construct easily cumulants of arbitrary order. The generatbers, but only the real part is relevant from the physical point

ing function of cumulants fointegratedflow, C(z;,2,), is  of view. For instance, the coefficient aff z, defines the

defined by[17,22 cumulant of order 3 which we shall use to extract differential
M flow,
C(21,2)=M((G(z1,22)) ™~ 1). (21)
Expanding in power series @, zi , z,, andz} , one ob- d{3}=Re((e'V" 417202, (27)
tains cumulants of arbitrary order. In particular, the coeffi-
cient of z§ 2z, in the expansion is Note the similarity between this expression and &§). In
.2 fact, the cumulant{3} shares the same featurescd8}: it
257, ; ; )
(C(21,20))= -+ 12 2<(e'(¢1+¢’2’2¢3)>)+ (22 s free from detector effects, and reflects physical three

particle correlations, due either to direct three-body correla-
tions, or to flow. Restoring the weights, the relation between

An explicit calculation using Eqg18) and(21) shows that the cumulant and flow readsee Eq(15)]

the expression of(e'(¢1*¢2243))) thus defined coincides

with Eq. (17) in the limit of largeM. ,
While the generating functiofi(z; ,z,) is real valued, the o3} = (W101){Wav5)v1{3}.

cumulant(e'(?1* $2-243))) defined by Eq(22) is in general a

complex number. However, the imaginary part results fromwe denote by ;{3} this estimate of ; obtained from three-

detector effects and statistical fluctuations, and only the regarticle correlations.

part is relevant. For sake of brevity, we denote this cumulant

of three-particle correlations by{3} in the following:

(28)

C. Interpolating the cumulants

c{3}=Re((/(#1* P2~ 20aly)), (23) In this section, we show how to extract the cumulants for

h Re d h | R ing th iah hintegrated and differential flows, Eq®3) and(27), numeri-
where Re denotes the real part. Restoring the weights, t 'Gally, from the computation of the generating function Eq.
cumulant gives an estimate of the weighted integrated OII(18) for various values of; andz,. We introduce the inter-

rected flow, which we denote byw,v4{3}) [see Eq.(14)], polation Points £1,254) = (Xup+i1Y1p, Xag+iy2g) With

C{3}=<W1U1{3}>2<W2U2>, (24) p’lT ) p’iT
. L Xl,pz I’OCOS< ?) ’ yl,p= rOSII’l( ?)
where the integrated elliptic floww,v,) comes from an
independent analysis.
Let us now turn to differential flow. We shall denote by qm qm
the azimuth of the differential particle under study, and)by Xoq= roco{ T) v Yoq= rosin< T) , (29

its flow, v;=(e'(/"®R)) and call it a “proton” (although it
can be any type of particleln opposition, we call “pions”
the particles used to estimate integrated flow. for p=0,...,7 andg=0,...,3, andwherer, is a real
The overall procedure in the analysis is quite similar tonumber, which must be neither too large, otherwise the error
the analysis of integrated flow. We first introduce a generatdue to higher-order terms in the power-series expansion of
ing function of the azimuthal correlations between the protor3(21.2) is large, nor too small, to avoid numerical errors.

and the pions_ Itis gi\/en by the average value quetons To obtain the cumulants, one should for each event
of €YG(z;,2,), whereG(z;,z,) is evaluated for the event choose randomly/l particles among thé/,, detected, and,
where the protons belong, with the particle azimuthg; (and possibly with their trans-
verse momenta and rapidities, iy and/or y-dependent
(e'YG(z1,2,))=(e"")+z (V" %))+ ... (25  weights are usedcompute the generating function Ed.8)

014905-6



ANALYSIS OF DIRECTED FLOW FROM ELLIPTIC FLOW PHYSICAL REVIEW (6, 014905 (2002

at the points, Eq(29). Then one must average the values (W2)y2(w3)
G(z1p,2,4) OVer events, and calculate the generating func- (5c{3})2=3—(2+4)(§+ 2X5+4x3x3+xD).
tion of cumulants, Eq(21). We denote byC, , the values of evts (35)
the generating functiod(z,,z,) evaluated at the interpola-
tion points(29), In this equation,y; and y, are the resolution parameters
appropriate for directed flow and elliptic flow, respectively,
Cp‘qEC( Zl,p ’ZZ,Q) . (30)
From thi titi then build Xn= <ann>N (36)
rom this quantities, we then bui = :
| )
1 .
(Cp)xET(Cp,O_ Cpo), From Eq.(35), and the relation b(_aMeeJ{3} and the flow
l'o Eq. (24) one can calculate the statistical error @mu ). If

one neglects the statistical error @3, one recovers the
(31) simple estimatg11) with unit weights, in the limit where
x1<<1 and y,<1. A more careful estimate must take into
. _ _ account the error ofw,uv,) in deriving the error oqw,v4).
which correspond to the real and imaginary parts of the destatistical errors on the cumulant are Gaussian. Since the
rivative of C(z;,2,) with respect toz,. Finally, the third-  relation between the cumulant and the integrated directed

1
(Cp)yE4_rO(Cp,3_ Cp.1),

order cumulant we are interested {3}, is given by flow, Eq. (24), is quadratic rather than linear, the resulting
error bars oq{w,v,) are asymmetric when the error is large,
1 as discussed in detail in Appendix D of RgL7].
c{3}= —[(Co)x=(C1)y=(C2)x+(Ca)y Similarly, the standard deviation of the differential cumu-
4rg lant d{3}, Eq. (27), is given by
+(Ca)x—(Cs)y—=(Ce)xt(Cr)y]. (32) w2)(w2
(5d{3})2=%(1+xf)(1+xi), (37

Consider now differential flow. We denote Wy, , the
values of the generating functidh(z,,z,) evaluated at the whereN’ denotes the number of protons used in the differ-

interpolation pointg29), ential flow analysis. Using the relatid@8) between this cu-
mulant and the differential flow;;{3}, we easily obtain the
Dp.q=(Dp.g)xti(Dpg)y=D(Z1p.,224), (33)  statistical error orv;{3}. Since the analysis is done in a

narrow phase space bin, one may reasonably assume here

where in fact one only need use even valueg:ahe inter-  that the error ord{3} is dominated by the error omy{3},
polation of the “differential” cumulant, which is only a Which yields

second-order derivative, requires less points than the “inte- 2 2
grated” cumulant, which is a derivative of third order. With svi{3}= 1 1txi 1+X2_ (39)
the quantities Eq(33), we then build 2N’ X1 X2

This result can be understood simply in two limiting cases.

(Dp)x= 7;-[(Dpo)x= (Dp2xt (Dpa)y=(Dpalyl, When bothy; and y, are large compared to unity, the reac-

0 tion planedy can be reconstructed accurately. The error on
(cos(—dg)) estimated wittN’ values ofy is then 142N’

(Dp)y= 7, [(Dpoly=(Dp2ly+ (Dpa)x— (Dp)xl, to which the error reduces for;>1, x»>1. In the opposite
0 casey;<<1, x»<<1, comparing Eqs(35) and(37), one finds
and the cumulant{3} is finally given by for unit weights v 1{3}/dv1{3} = VMNe,/N': errors scale

like the inverse square root of the number of particles in-
1 volved, and the determination of the integrated floyin-
d{3}= 4_ro[(DO)x_(DZ)V_(D4)X+(D6)y]- (34 volves a total number df N, particles while the differen-
tial flow v involvesN' particles.
Naturally, one may prefer using a different interpolation
scheme. In any case, one should check that the final values, IV. HIGHER ORDERS
c{3} andd{3}, do not depend on the parameters introduced
in the interpolation: here, one should try different values of
ro, and check the stability of the result.

In the preceding section, we have studied the three-
particle correlation, which is the lowest-order nontrivial re-
sult obtained with the generalized generating function.
Higher orders can also be derived in a straightforward way.
Expanding the generating function of cumulagi{g;,z,),

The standard deviation of the cumula{8B}, Eq.(23), is  defined in Eq(21), in power series of,, z} , z,, andz; ,
given by yields cumulants of arbitrary order,

D. Statistical errors
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Z*jzkz*lzm
C(z1,25)= 2 —j1|k|1||2m'2<<ei[¢1+“'+¢j—¢j+1—"'—¢j+k+2(¢j+k+1+'"+¢j+k+|—¢j+k+|+1—"‘—¢j+k+|+m)]>>_ (39
j'k'|'m KO H

The only relevant cumulants are those which are invariant=0 and those witj =k=0, | =m (denoted byc,{2j} and
under a simultaneous shift of all azimuthal angigs— ¢, c,{2l}, respectively.

+«. Other cumulants vanish except for statistical fluctua- \We now derive the relations between cumulants of arbi-
tions and detector effects. According to Ef9), this shiftis  trary orders and the flow coefficients, and v,. For this
equivalent to the change of variables—z.,e6™'*, 2,  purpose, we compute the average values¢t, ,z,) in the
—12,e 2% The only terms in Eq(39) which are invariant presence of flow. We first average for a given orientation of
under this transformation are those wjth 2 =k+2m. Any  the reaction planér. For an arbitrary particle, by definition
of these cumulants can be used to extract the flow. Until NOVt o, we may write(e"¢|dg) = v ,e"®r. Replacing in Eq.
we hgve explor(_ed.only a few possibilities: the case c0n5|d(19), dropping the weights for simplicity, and neglecting all
ered in Sec. lll is |,k,I,m)=(2,0,0,1); the cumulants used nonflow correlations. we obtain

in Ref.[17] to extractv,; andv, are those with =k, |=m ’

ZIUlei(DR‘f'ZlUle_iq)R‘f'Z;Uzezm)R‘f'ZzUZe_ziq)R M
(G(z1,2,)|Pry=| 1+ M
=exp(z¥ v,€'PR+ 20,67 PR)exp(ZE v 7 PR+ Zv 6 2 PR), (40)
|
The next step is to average ovd®;. We make use of the (€91t 9272434 2047209 \= — (1 )2(1,)5, (43

following formula:

If v, is measured independently, this equation yields an es-
timate ofv, from five-particle correlations, which we denote
by v.{5}. The statistical error om,{5} is not much larger
than the error on the earlier three-particle estimatgs} if
wherel ; is the modified Bessel function of ordgrApplying v is large enougtimore precisely, if the resolution param-
this identity to each term of Eq40) and integrating over eter y,~v,\M is larger than unity These higher orders
®r, one obtains may be useful at RHIC, not at SPS whergis too small.
Cumulants withj +k>2 in Eq. (39) involve higher powers

of v, and are useless in the situation we are interested in,
namely small values af ;.

z

q
|Z|) (212, (4

+ o
expz*e?+ze )= > eiq‘f’(
q=—o

(7 ddg
(G(z1,2))= 0 <G(21122)|¢R>ﬁ

+oo * 2

2,723
|21|2| Z,|

V. DISCUSSION

q=-—=

q
) 12q(2]24]v 1)14(2]25]v ).
In the preceding sections, we have presented a new
(42 method for analyzing directed flow (), through the help of
an independent measurement of elliptic floms). It allows
In the limiting casesz;=0 or z,=0, only the termgq=0  one to measure both integrated and differential flow, the
contributes to the sum in the rhs, and we reca¥®(z,,0))  value of integrated flow being used in the differential analy-
=10(2|z1|v1), (G(0,22))=10(2|2,|v,), already derived in gjs.
Ref. [17]. Our method relies on a study dhreeparticle correla-
Expanding the generating function of cumulants,tions. Unlike standard methods, based on two-particle corre-
C(21,22)=In(G(z1,2,)), in powers ofz;, z7, z,, Z;, and lations, it is not biased by two-particle nonflow correlations,
identifying with Eq.(39), one obtains the relations between which are an important bias at ultrarelativistic energies. This
the various cumulants and flow. As expected, the only nonean be checked experimentally by studyimg near midra-
vanishing terms are those that satisfy the condifer?l pidity: while standard two-particle estimateg{2} generally
=k+2m derived above, and the corresponding cumulantgio not cross zero, especially if they are not corrected for
are proportional tog;)! " ¥(v,)' "™, with an integer multipli-  momentum conservatiofl3], our estimatev,{3} should
cative constant depending on the value$,&fl,m. To order  naturally vanish at midrapidity, as expected.

Z¥2z5 73, for instance, one obtains In experiments where analyses of directed flow are al-
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ready available, it would be interesting to compare thesehape for a given detector and for eagh (y) bin, one only
standard estimates from two-particle correlationg{2}, has to count the number of hits in eaghbin while reading
with our new estimate from three-particle correlation$3}.  the data to analyze them, and in the end divide by the maxi-
If they are in agreementvithin statistical error bajsitisa  mal number encountered. The Fourier coefficients of the ac-
good hint that they indeed coincide with the true directedceptance function are defined by

flow. If they differ, it is instructive to study the centrality
dependence of the produkt(v,{3}°—v.{2}?), whereM is
the event multiplicity. If the difference between{2} and
v.{3} is due to two-particle nonflow correlations, this prod-
uct should be approximately constdi@5] (remember that These differential coefficients can be integrated, with appro-
two-particle nonflow correlations scale as/lj If the prod-  priate weighting and a sum over the various types of par-
uct differs significantly from a constant, then another explaticles used for the flow analysis, so as to describe the “inte-
nation must be looked for: the difference betwegfi2} and  grated” acceptance of the detector,

v1{3} may be due to fluctuations, either fluctuations of the

21 ) d
Anu,pT,y)sz AG.dprye ™S (aLa

impact parameter within a given centrality class of events . .
[24], or, more interestingly, physical fluctuations of the flow b Jf W(j,Pr.Y)An(j,pr.y)dprdy
event by event. ap[w]= :
The price to pay for eliminating nonflow effects is an 2 J—f w(j,pt.Y)Ao(j,pT,Y),dprdy
increase in statistical errors, compared to standard two- (Alb)

particle methods. However, this increase is moderate, a fac-

tor of 2 or Iess_ at SPS and RHIC. This new method is thugyote our introducing the weights(j,py,y), which are of
much less statistics demanding than those based on correlgs,rse the same as in EQ8), eitherw,(j) or w,(j). In the
tions between fouror morg particles. All in all, three-  f5jiowing, we assume that both weights are equal, so that
particle correlatlor_ls. seem to be the most appropriate way tthere is only one set oy, coefficients. If two different
measurev, when it is small, and especially if, is strong: _weights are used—a weight, that maximizesy; and the
near the balance energy, at SPS, RHIC, and the forthcom|r\geight w, that was used to derive the reference—one

experiments at LHC. should keep track of the two different sets of coefficients
a,[w;], a,[w,] in the calculation that we now sketch.
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APPENDIX: ACCEPTANCE CORRECTIONS

In the case of a realistic detector, with a nonisotropic ac- (M| dgy=ar+ > (a,_n—apai)v,ePR,  (A2)
- p#0
ceptance, the relations between the cumulants and flow, Egs.

(24) and(28), no longer hold. In this appendix, we derive the wherea*=a_, is the complex conjugate di,. Thus, a

relevant modifications taking into account the detector ac-. _ . . ) ! :
ceptance 9 nonisotropic acceptance mixes the various flow harmonics.

In what follows, we assume that the various classes o’fn the case of a perfect acceptance, Hed) show that all
P . . . _—coefficientsa, vanish, excepgy=1, and the identity(A2)
events analyzed, for instance, the different centrality bins

ing _ in® . - . :
are determined with aimdependentdetector(e.g., a zero 55;%56\2 ]qu;ﬁz Evr(‘% ", which follows in a straightfor
degree calorimetgrwhich has a full azimuthal coveragat Y 4.

least approximately This is meant to make sure that the i Igseztllg)g tgr?ea\ézgﬁg Vtﬁlge’ei(qe\rzgti;or ?u?itiigdgv:erza ed
centrality assigned to a given event is not strongly correlate d: ' 9 g 9

to the orientation of its reaction plane, which would bias the?¥e" events with the same orientation of the reaction plane,

sample of events used in the flow analysis. §hG (nzl’?)lq)ﬁ:' Tthe I;tter mnl]Jslt tnhten bi?] avér:?ei;g)’
To describe a detector, we introduce its acceptance/ eff en one computes the cumulants using Egs) a '

ciency functionA(j, ¢, p-,y), which is the probability that a Ikeeplng only the real part. In particular, the third cumulant

. N ! reads
particle of typegj with azimuthg, transverse momentupy;,
and rapidityy be detected17,22. Obviously,A(j,¢,pt,Y) B =Re(1—lal?)(1-la,|?)?
will vary from a detector to another, and a “perfect” detector cf{3}=Re((1-]az[) (1~ ")
corresponds tAA(j,¢,pr.y)=1 for every particle type in +2[(a;—afay)?(ak —ar?)+(1-|a,|?)|as
the whole phase space. In practiéd;,¢,pt,y) is propor-
tional to the number of hits in a,pr,y) bin: to obtain its —ay3,/*+ (a,—a5)(a3 —a1?)’vivy,  (A3)
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instead of Eq(24), where we have assumed that onlyand The average value over protons in the numerator of Eq.
v, are nonvanishing. When the detector is perfect, one ref26) is then computed in two steps, first averaging over pro-
covers Eq.(24). Even if the detector is not perfect, but nev- tons detected in events with the same orientation of the re-
ertheless does not have too bad an acceptance, the factordetion plane, then averaging o, . The denominator of
front of v2 v, in Eq. (A3) will remain close to 1, since the Eq.(26), (G(z;,2,)|DR), is the same as in the calculation of
correction terms are_at least quadratic i_n ﬁ}_ecoefficients. c{3}. Finally, d{3} is given by the coefficient of} z, in the
Thus, Eq.(24) remains a good approximation, except for expansion in power series @#(z;,z,),

detectors with a very bad azimuthal coverage.

The contribution of flow to the “differential” cumulant
d{3}, Eq. (27), can be calculated along the same lines. In
that calculation, one may assume that integrated and differ-
ential flows are measured using two different detectors: e.g.,
a large acceptance detector for integrated flow, and a smaller
one, but with better particle identification pr determina-
tion, for differential flow. We thus denote b&'(j,#,pt,Y)
the corresponding acceptance function and\pgj,pr,y) its
Fourier coefficients defined as in E@1a). The differential
acceptance coefficients, are then defined as in E¢Alb), ] ] ) ]
without the weights and the summation oyefsince one A nonisotropic acceptance will cause interference between
usually measures the differential flow of identified partitles the various differential flow harmonics: the measurement of
and with the integration over; andy restricted to the phase- directed differential flow ; is perturbed by the elliptic dif-
space region under intere@ypically, one integrates over ferential flowv. It is worth noting that as soon as the ac-

d{3}=Rd(1-]ay|)(1—|ay|®) +(a;—a}a,)%as*
+|ag—aja,|®+ (a3 —aj?)(a;—a3)as* Jujviv,
+Re(1-]ay?)(az—a,a,)a5*

+ (a3 —aj?)(a,—ajay)ailvyvl. (A%)

pr or y, so as to obtainv; as a function ofy or pr,
respectively.

ceptance of the detector used for integrated flow is perfect,
Eq. (A4) reduces to Eq(28).
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