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Analysis of directed flow from elliptic flow
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The directed flow of particles produced in ultrarelativistic heavy ion collisions at the CERN Super Proton
Synchrotron and the Brookhaven Relativistic Heavy Ion Collider is so small that currently available methods
of analysis are at the border of applicability. Standard two-particle and flow-vector methods are biased by large
nonflow correlations. On the other hand, cumulants of four-particle correlations, which are free from this bias,
are plagued by large statistical errors. Here, we present a new method based on three-particle correlations,
which uses the property that elliptic flow is large at these energies. This method may also be useful at
intermediate energies, near the balance energy where directed flow vanishes.
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I. INTRODUCTION

The azimuthal angles of particles emitted in a heavy
collision are correlated with the direction of the impact p
rameter~reaction plane! of the two incoming nuclei. This
correlation is characterized by the Fourier coefficients of
particle azimuthal distribution,vn @1#,

vn[^cos@n~f2FR!#&, ~1!

wheren is an integer,f denotes the azimuthal angle of a
outgoing particle,FR is the azimuth of the reaction plane
and angular brackets denote an average over events and
all particles in a given transverse momentum and rapid
window.

The first Fourier coefficientv1, referred to asdirected
flow, is usually positive in the forward hemisphere for pr
tons. This is because particles are deflected away from
target. This effect was first observed at Bevalac in 1984@2#,
and reaches its maximum value at about 400 MeV
nucleon@3#. At much lower energies, below 100 MeV pe
nucleon,v1 becomes negative due to the attractive nucl
mean field@4,5#. At ultrarelativistic energies, it decreases:
the CERN Super Proton Synchrotron~SPS!, it is of the order
of 2% @6#. At the Brookhaven Relativistic Heavy Ion Co
lider ~RHIC!, it has not been measured yet. Accurate m
surements ofv1 are important since this quantity is a sen
tive probe of nuclear matter properties@7#. There is an
interesting prediction that this quantity may even beco
negative above SPS energies@8#.

Standard methods for analyzing directed flow@9–11# are
based on the assumption that all azimuthal correlations
tween outgoing particles are due to flow. When flow b
comes too small, however, other sources of correla
~‘‘nonflow’’ correlations! can no longer be neglected. Corr
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lations due to global momentum conservation are w
known @12#, and a systematic method to correct for this e
fect has recently been proposed@13#. However, many other
effects are expected to produce nonflow correlations of
same order of magnitude, such as quantum Hanbury Brow
Twiss correlations@14# and resonance decays@15#. We have
proposed new methods, based on higher-order correlat
@16,17#, which allow one to get rid of nonflow correlations
However, statistical errors on four-particle~or higher-order!
correlations are larger, so that these methods may fail if fl
is too small.

In this paper, we propose a new method that is free fr
these limitations. It allows one to obtain an estimate ofv1
which is insensitive to nonflow correlations, with statistic
errors usually not much larger than with standard techniqu
This method is based on the observation that elliptic fl
(v2, second Fourier harmonic of the azimuthal distributio!
is reasonably large in the situations considered where
rected flow is hard to measure:v2 is roughly 3% at SPS@6#,
and even larger at RHIC@18#. Our method relies on the
measurement of three-particle azimuthal correlations, wh
involve bothv1 andv2,

^ei (f11f222f3)&.~v1!2v2 , ~2!

wheref1 , f2, andf3 denote azimuthal angles of three pa
ticles belonging to the same event, and the average runs
triplets of particles emitted in the collision, and over even
This equation yields (v1)2v2, and one then deducesv1 once
v2 has been obtained from a separate analysis.

The idea of mixing two Fourier harmonics is not ne
Similar three-particle correlations were already considere
Ref. @19#. They also underly measurements of elliptic flo
relative to the event plane determined from directed fl
@20#: in these analyses, one first obtainsv1, and thenv2 from
an equation similar to Eq.~2!. In particular, this is the only
method to obtain the sign ofv2, and it was used for this
purpose at SPS@6,21#. Here we propose to do the other wa
round: first measurev2, then obtainv1 from the three-
particle correlation.

In Sec. II, we present in more detail the principle of t
method, and we explain why it is better than other metho
when directed flow is small. Then, in Sec. III, we descri

ss:
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the practical implementation of the method. This impleme
tation makes use of two techniques already introduced
Refs.@17,22#: first, a cumulant expansion allows us to elim
nate the effects of azimuthal asymmetries in the detector
ceptance; second, the formalism of generating functions
vides an elegant way of constructing three-parti
correlations ~and beyond!, with a computer time which
grows only linearly with the number of particles involve
while taking into account all possible particle triplets. A ge
eralization to higher-order cumulants is presented in Sec
Our results are discussed in Sec. V.

II. PRINCIPLE AND ORDERS OF MAGNITUDE

In this section, we compare three methods of analyz
directed flow: the standard two-particle technique, the fo
particle cumulant, and the three-particle mixed correlati
Eq. ~2!, which is the focus of this paper. In Sec. II A, w
recall howv1 can be obtained from azimuthal correlations
various ways. In Secs. II B and II C, we estimate for ea
method the order of magnitude of errors due to nonflow c
relations and finite statistics. Numerical estimates are gi
in Sec. II D, where we show that three-particle correlatio
provide the most~if not only! reliable way of analyzing di-
rected flow at ultrarelativistic energies. In Sec. II E, we
nally explain how to perform detailed measurement ofv1 as
a function of transverse momentum and rapidity with t
method.

A. Directed flow from azimuthal correlations

In a given collision, the azimuth of the reaction planeFR
is unknown, so that the Fourier coefficientsvn of the azi-
muthal distribution, defined in Eq.~1!, can only be obtained
from azimuthal correlations between the outgoing partic
The simplest way is to use correlations between two parti
@10#, labeled 1 and 2, belonging to the same event,

^ei (f12f2)&5^ei (f12FR)ei (FR2f2)&

5^ei (f12FR)&^ei (FR2f2)&

5~v1!2, ~3!

where, as in the previous equations, averages are taken
pairs of particles and over events. In going from the first
the second line, we have assumed that all azimuthal corr
tions are due to flow, i.e., that azimuthal angles relative to
reaction planef12FR and f22FR are independent. The
‘‘standard’’ flow analysis@9# proceeds differently: one corre
lates the azimuth of an individual particle with a ‘‘flow vec
tor’’ obtained by summing over many particles. This corr
lation is larger than the correlation between two individu
particles, typically by a factor ofAM , whereM is the number
of particles involved in the flow vector. However, the flow
vector method and the two-particle method are essent
equivalent, inasmuch as both suffer from the same lim
tions, due to nonflow correlations: the enhancement fa
AM applies to the flow correlation as well as to nonflo
01490
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correlations, as was shown explicitly in the case of the c
relation due to momentum conservation in Ref.@13#.

It is straightforward to generalize Eq.~3! to higher-order
correlations, such as the four-particle correlation,

^ei (f11f22f32f4)&5~v1!4, ~4!

where the average now involves all possible quadruplets
particles belonging to the same event. This result will
used below.

In this paper, we shall be concerned with yet another ty
of correlation, namely, a three-particle correlation whi
mixes the first two Fourier harmonics,

^ei (f11f222f3)&5^ei (f12FR)ei (f22FR)e2i (FR2f3)&

5~v1!2v2 . ~5!

If v2 is already known from a previous analysis, using t
three-particle correlation Eq.~5! allows one to extract an
estimate ofv1.

B. Nonflow correlations

The above estimates were derived under the assump
that all azimuthal correlations are due to flow. Howev
there are also other, ‘‘nonflow,’’ contributions to azimuth
correlations due to various effects@11,14,15#. Let us recall
the order of magnitude of these correlations by taking
simple example: if a resonance decays intok particles, these
k particles will be strongly correlated by the decay kinem
ics. Now, the probability thatk arbitrary particles seen in a
detector originate from the same resonance scales like
total multiplicity M of the event like 1/Mk21. This is gener-
ally the order of magnitude of the genuinek-particle corre-
lation due to nonflow effects. In particular, the two-partic
nonflow correlation is of the order of 1/M , so that Eq.~3!
reads in fact

^ei (f12f2)&5~v1!21OS 1

M D . ~6!

Whenv1 becomes smaller than 1/AM , the resulting error on
v1 due to the unknown nonflow term becomes as large asv1
itself. This is probably the case at SPS, as shown in R
@15#, anda fortiori at RHIC energies.

A similar reasoning applies to higher-order correlation
In the case of the four-particle correlation, Eq.~4!, it may for
instance happen that two pions labeled 1 and 3 origin
from the samer meson, while 2 and 4 come from anotherr
meson. This gives a four-particle correlation of ord
O(1/M )2. However, these pairwise correlations can be s
tracted from the measured four-particle correlation so as
isolate the genuine four-particle correlation. This is the pr
ciple of the cumulant expansion that was proposed in R
@16,17# to get rid of nonflow correlations in the flow analy
sis. The cumulant of the four-particle correlation is defin
as

^̂ ei (f11f22f32f4)&&

[^ei (f11f22f32f4)&2^ei (f12f3)&^ei (f22f4)&

2^ei (f12f4)&^ei (f22f3)&. ~7!
5-2
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According to the above discussion, the contribution of no
flow effects to this genuine four-particle correlation is
order 1/M3, much smaller than 1/M2. The contribution of
flow follows in a straightforward way from Eqs.~3! and~4!,
so that one may finally write

^̂ ei (f11f22f32f4)&&52~v1!41OS 1

M3D . ~8!

Finally, let us estimate nonflow contributions to the mix
three-particle correlation, Eq.~5!. Unlike the four-particle
correlation Eq.~4!, this quantity does not receive any cont
bution from two-particle correlations, since quantities su
as^ei (f11f2)& or ^ei (f122f3)& vanish by symmetry. The only
nonflow correlation is the genuine three-particle correlati
of order 1/M2, and Eq.~5! becomes

^ei (f11f222f3)&5~v1!2v21OS 1

M2D . ~9!

In the following, we shall denote byv1$2%, v1$4%, and
v1$3% the estimates ofv1 obtained from Eqs.~6!, ~8!, and
~9!, respectively, ignoring the nonflow term. Using the
equations, one finds that the differences due to nonflow
relations between these estimates and the exact valuev1 are
of order

v1$2%2v15OS 1

Mv1
D ,

v1$4%2v15OS 1

~Mv1!3D ,

v1$3%2v15OS 1

~Mv1!~Mv2! D . ~10!

As explained in Ref.@16#, it is possible to measurevn only if
Mvn@1, and we assume throughout this paper that this c
dition holds both forv1 and v2. Then, Eq.~10! shows that
estimates ofv1 from three- or four-particle correlations ar
much less biased by nonflow correlations than standard
mates from two-particle correlations.

C. Statistical errors

In practice, the use of higher-order correlations is limit
by statistical errors due to limited statistics. The various c
relations encountered are quantities of the ty
(1/N)( j 51

N cos(Dfj), where theDf j are various combina
tions of the particle azimuths. If theDf j are independent an
randomly distributed, the standard error on such a quantit
1/A2N.

In the case of two-particle correlations, Eq.~3!, one can
constructM (M21)/2 different pairs of particles in an even
with multiplicity M, so that the total number of combination
is N.NevtsM

2/2 for Nevts events. In the case of four-particl
correlations, Eq.~4!, one can constructM (M21)(M22)
3(M23)/8 independent quadruplets, so thatN.NevtsM

4/8.
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Finally, in the case of three-particle correlations, there
M (M21)(M22)/2 independent triplets, so thatN
.NevtsM

3/2.
One thus obtains the following expressions for the relat

statistical errors on the various estimates ofv1:

dv1$2%

v1
.

1

2ANevts

1

~v1AM !2
,

dv1$4%

v1
.

1

2ANevts

1

~v1AM !4
,

dv1$3%

v1
.

1

2ANevts

1

~v1AM !2~v2AM !
. ~11!

These estimates are correct as long asv1AM andv2AM are
not larger than unity, otherwise correlations due to flow m
be taken into account in the calculation of statistical err
@17#. A more accurate formula fordv1$3% will be given be-
low in Sec. III D.

In this paper, we are interested in the situation where
rected flow is very small,v1AM!1, which is the case when
the standard flow analysis fails due to large nonflow corre
tions ~see Sec. II B!. In that case, one sees that the statisti
uncertainty onv1$4%, i.e., the estimate from the fourth-orde
cumulant, is much larger than the error on the standard e
matev1$2%. On the other hand, if elliptic flow is significantly
large,v2AM is not much lower than unity: in such a case, t
mixed-correlation technique provides an estimate ofv1 with
a statistical error of the same order as the standard anal
but which is much less biased by nonflow correlations.

D. Orders of magnitude at SPS and RHIC

Let us estimate numerically the various errors discus
above in a realistic situation. In practice, evaluating the m
nitude of nonflow correlations requires a detailed modeli
Equations ~10!, strictly speaking, represent scaling law
rather than orders of magnitude. Detailed studies of vari
effects at SPS energies@13–15# show that the contribution o
nonflow correlations tov1 obtained from the standard analy
sis ~which is equivalent tov1$2% above! is of the same order
asv1 itself. For midcentral collisions,v2 is about 3%@6# and
the number of detected particlesM;300. According to Eq.
~10!, one expects that using three-particle correlations~i.e.,
v1$3%) will reduce systematic errors due to nonflow corre
tions by a factor of at leastMv2, that is, a factor of 10. Thus
one expects estimates using higher-order correlationsv1$3%
and v1$4% to be little biased by nonflow correlations, con
trarily to v1$2%.

Statistical errors can be estimated quantitatively us
Eqs. ~11!. Realistic values at SPS areNevts550k events,M
5300 particles,v1.2% andv2.3%. One then obtains
5-3
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dv1$2%

v1
.2%,

dv1$4%

v1
.16%,

dv1$3%

v1
.4%. ~12!

The relative statistical error onv1$4% is too large to allow
detailed measurements ofv1 as a function ofpT or y. On the
other hand, the uncertainty onv1$3% is only twice larger than
the error onv1$2%, while we have seen above that the ga
on the systematic error due to nonflow correlations is ty
cally a factor of 10.

At RHIC, v2 is larger, typically 5% for midcentral colli-
sions@18#, so that measuring directed flow from elliptic flo
(v1$3%) is even more appropriate than at SPS. This is
flected in both systematic errors due to nonflow correlatio
and in statistical errors. Whilev2 is larger than at SPS,v1 is
expected to be smaller if one extrapolates the decrease
served at SPS compared to the Brookhaven Alternating G
dient Synchrotron~AGS!. The number of detected particle
M can be estimated using the values ofv2 and the event
plane resolution given in Ref.@18#, and is similar to that used
above for SPS,M.300.

Sincev1 is smaller than at SPS, one expects from Eq.~10!
that the bias onv1$2% from nonflow correlations will be even
worse. However, the decrease inv1 may be partially com-
pensated by the increase inv2, so that the error onv1$3%
remains of the same order. WithNevts550k events,v1
51%, v255%, one obtains the following statistical error

dv1$2%

v1
.7%,

dv1$4%

v1
.250%,

dv1$3%

v1
.11%, ~13!

where we have used the formula derived in Sec. III D
dv1$3% @herev2AM is of order unity, so that the third of Eqs
~11! no longer applies#. The statistical uncertainty is onl
50% larger onv1$3% than onv1$2%, while once again the
gain on the systematic error more than compensates for
loss.

These numerical estimates show clearly that three-par
mixed correlations offer the best compromise to measurev1
at ultrarelativistic energies. The corresponding estim
v1$3% is much less affected by nonflow correlations th
standard two-particle methods. In this respect, it shares
advantages of higher-order estimates such asv1$4%. In addi-
tion, v1$3% is much less limited by statistics than the latt
which would require millions of events at SPS and RH
energies.
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E. Integrated flow, differential flow

As with other methods, the analysis proceeds in two ste
One first estimates the average value ofv1 over phase space
This is done by averagingei (f11f222f3) over all possible
triplets, as in Eq.~2!. However,v1 and v2 depend strongly
on rapidity and transverse momentum~for instance,v1 has
opposite signs in the backward and forward hemispheres!. In
practice, one therefore performs aweightedaverage, and Eq
~2! becomes

^w1~1!w1~2!w2~3!ei (f11f222f3)&5^w1v1&
2^w2v2&,

~14!

wherew1 and w2 are weights appropriate to directed flo
and elliptic flow, respectively, which may be any function
the particle type, its transverse momentumpT and rapidityy.
In this equation,wn(k) is a shorthand forwn(pTk ,yk). The
right-hand side~rhs! of Eq. ~14! naturally involvesweighted
averageŝwnvn&, rather thanvn .

The best choice for the weights is that which leads to
smallest statistical errors. Repeating the discussion in S
II C, one easily shows that this is done by maximizin
^wnvn&/A^wn

2&. Therefore the best weight is the flow itse
@16,23#, wn(pT ,y)5vn(pT ,y), wherevn(pT ,y) denotes the
value of the flow in a small (pT ,y) bin. In practice, one can
choose as a first guess the center-of-mass rapidity for
rected flow,w15y2yCM , and the transverse momentum f
elliptic flow w25pT , in regions of phase space covered
the detector acceptance.

Using the value of the integrated~and weighted! elliptic
flow ^w2v2& obtained from a separate analysis, one fina
obtains the integrated directed floŵw1v1& from Eq. ~14!.
Naturally, one must use the same weightw2 in the reference
analysis that giveŝ w2v2& and in the mixed-correlation
analysis.

The second step is to analyze differential flow, i.e.,
obtain values ofv1 as a function of transverse momentumpT
and/or rapidity y. For that purpose, one averag
ei (f11f222f3) over allf2 andf3, but restrictsf1 to a given
particle type in a particular (pT ,y) bin,

^w1~2!w2~3!ei (f11f222f3)&5^w1v1&^w2v2&v1~pT ,y!.
~15!

Note that there is no weight for the ‘‘differential’’ particle
labeled 1, for which we do not perform any phase spa
average. With the previously derived values of^w2v2& and
^w1v1&, one obtains the differential flowv1(pT ,y). This dif-
ferential flowv1(pT ,y) will be denoted byv18 in this paper,
while we keep the notationv1 for the integrated value only

III. IMPLEMENTATION

In this section, we show how to analyze directed flow
practice using the three-particle correlation method. T
method proposed here is a straightforward generalizatio
the one introduced in Ref.@17#, which involves the formal-
ism of cumulants and generating functions. One may beli
at first sight that this formalism is a useless complicat
5-4
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here. But in fact, it provides an efficient and elegant solut
to the following problems.

~1! Taking into account azimuthal asymmetries in the d
tector acceptance, which always exist, even if the dete
has full azimuthal coverage.

~2! Eliminating correlations due to detector effects.
~3! Dealing with the combinatorics, i.e., averaging ov

all possible triplets.
We define the cumulants in Sec. III A. The generati

functions used in analyzing integrated and differential fl
are introduced in Sec. III B. Then we give interpolation fo
mulas that can be used to extract the relevant cumulants
these generating functions~Sec. III C!. Finally, in Sec. III D,
we derive the standard statistical errors on both integra
and differential flow.

A. Cumulants

Even if the detector has full azimuthal coverage, its
ceptance is not perfectly isotropic, so that averages like^eif&
do not strictly vanish. A general way to take into accou
such effects consists in using cumulants. For instance,
cumulant associated with the two-particle correlation Eq.~3!
is defined as

^̂ ei (f12f2)&&[^ei (f12f2)&2^eif1&^e2 if2&. ~16!

If the detector is perfectly isotropic, the last term vanish
and the cumulant reduces to the two-particle correlati
-

e
.
-

re
e
e

a
a-
in
y
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With a realistic detector, however, the cumulant isolates
physical correlation by subtracting the contribution of dete
tor effects. Similarly, the cumulant of the three-particle co
relation is defined as

^̂ ei (f11f222f3)&&[^ei (f11f222f3)&2^ei (f11f2)&^e22if3&

2^eif1&^ei (f222f3)&2^eif2&^ei (f122f3)&

12^eif1&^eif2&^e22if3&. ~17!

As in the previous case, this isolates the genuine thr
particle correlation from effects of detector inefficiencie
and from spurious correlations induced by detector effec

If the acceptance is almost azimuthally symmetric, th
all acceptance corrections are taken into account autom
cally by the cumulant expansion: in order to obtain the flo
one simply need replace the left-hand side~lhs! of Eq. ~5! by
the cumulant Eq.~17!. If detector asymmetries are stronger
multiplicative factor appears in the rhs of Eq.~5! relating the
correlation to the flow. This correction is derived
the Appendix.

B. Generating functions

Generating functions provide an elegant way of summ
over all possiblen-uplets in a given event. For a given eve
with M particles seen in the detector, we define the followi
real-valued function of two complex variablesz15x11 iy1
andz25x21 iy2:
G~z1 ,z2!5)
j 51

M F11
w1~ j !

M
~z1* eif j1z1e2 if j !1

w2~ j !

M
~z2* e2if j1z2e22if j !G

5)
j 51

M F11
w1~ j !

M
@2x1cos~f j !12y1sin~f j !#1

w2~ j !

M
@2x2cos~2f j !12y2sin~2f j !#G , ~18!
re

the
h
ul-
wherez1* [x12 iy1 andz2* [x22 iy2 are the complex conju
gates ofz1 andz2, respectively, andw1( j ) andw2( j ) are the
weights mentioned in Sec. II E. For sake of simplicity, w
drop these weights from now on, unless otherwise stated

The generating functionG(z1 ,z2) generalizes the gener
ating functionGn(z) introduced in Ref.@17#: the latter in-
volved only one Fourier harmonic at a time, while we a
now mixing two Fourier harmonics. More specifically, w
recover the results of our earlier work in the limiting cas
when either z1 or z2 vanishes:G(z,0)5G1(z), G(0,z)
5G2(z).

Neither the generating functionG(z1 ,z2), nor the com-
plex numbersz1 , z2 have a physical meaning. They are
formal trick which allows us to extract azimuthal correl
tions to all orders, if necessary. This is done by averag
G(z1 ,z2) over events @we denote this average b
^G(z1 ,z2)&#, and then expanding in power series ofz1 , z1* ,
z2, and z2* . For instance, the coefficient ofz1*

2z2 in the
expansion is
s

g

^G~z1 ,z2!&5•••1
z1*

2z2

M3 K (
j ,k,l

ei (f j 1fk22f l )L 1•••.

~19!

The sum runs over nonequivalent triplets, i.e.,j ,k. The val-
ues of (j , k, l ) are all different, so that autocorrelations a
automatically avoided. Since there areM (M21)(M22)/2
nonequivalent triplets, one obtains for largeM,

^G~z1 ,z2!&5•••1
z1*

2z2

2
^ei (f11f222f3)&1•••. ~20!

One recognizes here the three-particle correlation Eq.~2!,
averaged over triplets of particles and over events.

In our averaging over events, we have assumed that
number of particlesM is the same for all events. Althoug
the method can accommodate small fluctuations of the m
tiplicity M, this is a possible source of error@17#. Our rec-
5-5
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ommendation is the following: in a given centrality bi
where the total number of detected particlesM tot fluctuates
from one event to the other, choose afixed number of par-
ticles M<M tot to construct the generating function Eq.~18!.
Although using only a fraction of the total number of pa
ticles results in a loss in statistics, this avoids the unc
trolled effects due to fluctuations in the multiplicity.

Note that the generating function previously introduced
Refs.@17,22# was a function of only one complex variablez.
Here, we need two independent variablesz1 andz2 because
we are mixing two different Fourier harmonics of the a
muthal distribution.

Generating functions are not only a convenient way
summing over alln-uplets of particles. They also allow on
to construct easily cumulants of arbitrary order. The gene
ing function of cumulants forintegratedflow, C(z1 ,z2), is
defined by@17,22#

C~z1 ,z2![M ~^G~z1 ,z2!&1/M21!. ~21!

Expanding in power series ofz1 , z1* , z2, andz2* , one ob-
tains cumulants of arbitrary order. In particular, the coe
cient of z1*

2z2 in the expansion is

^C~z1 ,z2!&5•••1
z1*

2z2

2
^̂ ei (f11f222f3)&&1•••. ~22!

An explicit calculation using Eqs.~18! and ~21! shows that
the expression of̂^ei (f11f222f3)&& thus defined coincides
with Eq. ~17! in the limit of largeM.

While the generating functionC(z1 ,z2) is real valued, the
cumulant̂ ^ei (f11f222f3)&& defined by Eq.~22! is in general a
complex number. However, the imaginary part results fr
detector effects and statistical fluctuations, and only the
part is relevant. For sake of brevity, we denote this cumu
of three-particle correlations byc$3% in the following:

c$3%[Re~ ^̂ ei (f11f222f3)&&!, ~23!

where Re denotes the real part. Restoring the weights,
cumulant gives an estimate of the weighted integrated
rected flow, which we denote bŷw1v1$3%& @see Eq.~14!#,

c$3%5^w1v1$3%&2^w2v2&, ~24!

where the integrated elliptic floŵw2v2& comes from an
independent analysis.

Let us now turn to differential flow. We shall denote byc
the azimuth of the differential particle under study, and byv18
its flow, v18[^ei (c2FR)&, and call it a ‘‘proton’’ ~although it
can be any type of particle!. In opposition, we call ‘‘pions’’
the particles used to estimate integrated flow.

The overall procedure in the analysis is quite similar
the analysis of integrated flow. We first introduce a gene
ing function of the azimuthal correlations between the pro
and the pions. It is given by the average value overprotons
of eicG(z1 ,z2), whereG(z1 ,z2) is evaluated for the even
where the protons belong,

^eicG~z1 ,z2!&5^eic&1z1^e
i (c2f1)&1 . . . . ~25!
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Note that in the averaging procedure, an event with two p
tons is counted twice, while an event with no proton does
contribute.

Then we define a generating function of the cumulants
differential flow, D(z1 ,z2), by @17,22#

D~z1 ,z2![
^eicG~z1 ,z2!&

^G~z1 ,z2!&
, ~26!

where, in the denominator,^G(z1 ,z2)& denotes an averag
over all events. The cumulants are the coefficients in
expansion in power series of this generating function. As
the case of integrated flow, they are in general complex nu
bers, but only the real part is relevant from the physical po
of view. For instance, the coefficient ofz1* z2 defines the
cumulant of order 3 which we shall use to extract different
flow,

d$3%[Re~ ^̂ ei (c1f122f2)&&!. ~27!

Note the similarity between this expression and Eq.~23!. In
fact, the cumulantd$3% shares the same features asc$3%: it
is free from detector effects, and reflects physical thr
particle correlations, due either to direct three-body corre
tions, or to flow. Restoring the weights, the relation betwe
the cumulant and flow reads@see Eq.~15!#

d$3%5^w1v1&^w2v2&v18$3%. ~28!

We denote byv18$3% this estimate ofv18 obtained from three-
particle correlations.

C. Interpolating the cumulants

In this section, we show how to extract the cumulants
integrated and differential flows, Eqs.~23! and~27!, numeri-
cally, from the computation of the generating function E
~18! for various values ofz1 andz2. We introduce the inter-
polation points (z1,p ,z2,q)5(x1,p1 iy1,p , x2,q1 iy2,q) with

x1,p5r 0cosS pp

8 D , y1,p5r 0sinS pp

8 D ,

x2,q5r 0cosS qp

4 D , y2,q5r 0sinS qp

4 D , ~29!

for p50, . . . ,7 andq50, . . . ,3, andwhere r 0 is a real
number, which must be neither too large, otherwise the e
due to higher-order terms in the power-series expansion
G(z1 ,z2) is large, nor too small, to avoid numerical errors

To obtain the cumulants, one should for each ev
choose randomlyM particles among theM tot detected, and,
with the particle azimuthsf j ~and possibly with their trans
verse momenta and rapidities, ifpT and/or y-dependent
weights are used! compute the generating function Eq.~18!
5-6



es
nc

-

de

te
th

on
lu
e
o

rs
,

to

the
ted
g

e,

u-

er-

a
here

es.
c-
on

in-

ee-
e-
n.
ay.

ANALYSIS OF DIRECTED FLOW FROM ELLIPTIC FLOW PHYSICAL REVIEW C66, 014905 ~2002!
at the points, Eq.~29!. Then one must average the valu
G(z1,p ,z2,q) over events, and calculate the generating fu
tion of cumulants, Eq.~21!. We denote byCp,q the values of
the generating functionC(z1 ,z2) evaluated at the interpola
tion points~29!,

Cp,q[C~z1,p ,z2,q!. ~30!

From this quantities, we then build

~Cp!x[
1

4r 0
~Cp,02Cp,2!,

~Cp!y[
1

4r 0
~Cp,32Cp,1!, ~31!

which correspond to the real and imaginary parts of the
rivative of C(z1 ,z2) with respect toz2. Finally, the third-
order cumulant we are interested in,c$3%, is given by

c$3%5
1

4r 0
2 @~C0!x2~C1!y2~C2!x1~C3!y

1~C4!x2~C5!y2~C6!x1~C7!y#. ~32!

Consider now differential flow. We denote byDp,q the
values of the generating functionD(z1 ,z2) evaluated at the
interpolation points~29!,

Dp,q[~Dp,q!x1 i ~Dp,q!y[D~z1,p ,z2,q!, ~33!

where in fact one only need use even values ofp: the inter-
polation of the ‘‘differential’’ cumulant, which is only a
second-order derivative, requires less points than the ‘‘in
grated’’ cumulant, which is a derivative of third order. Wi
the quantities Eq.~33!, we then build

~Dp!x[
1

4r 0
@~Dp,0!x2~Dp,2!x1~Dp,1!y2~Dp,3!y#,

~Dp!y[
1

4r 0
@~Dp,0!y2~Dp,2!y1~Dp,3!x2~Dp,1!x#,

and the cumulantd$3% is finally given by

d$3%5
1

4r 0
@~D0!x2~D2!y2~D4!x1~D6!y#. ~34!

Naturally, one may prefer using a different interpolati
scheme. In any case, one should check that the final va
c$3% andd$3%, do not depend on the parameters introduc
in the interpolation: here, one should try different values
r 0, and check the stability of the result.

D. Statistical errors

The standard deviation of the cumulantc$3%, Eq. ~23!, is
given by
01490
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~dc$3%!25
^w1

2&2^w2
2&

2M3Nevts

~214x1
212x2

214x1
2x2

21x1
4!.

~35!

In this equation,x1 and x2 are the resolution paramete
appropriate for directed flow and elliptic flow, respectively

xn[
^wnvn&

A^wn
2&

AM . ~36!

From Eq.~35!, and the relation betweenc$3% and the flow
Eq. ~24! one can calculate the statistical error on^w1v1&. If
one neglects the statistical error onv2, one recovers the
simple estimate~11! with unit weights, in the limit where
x1!1 and x2!1. A more careful estimate must take in
account the error on̂w2v2& in deriving the error on̂w1v1&.
Statistical errors on the cumulant are Gaussian. Since
relation between the cumulant and the integrated direc
flow, Eq. ~24!, is quadratic rather than linear, the resultin
error bars on̂ w1v1& are asymmetric when the error is larg
as discussed in detail in Appendix D of Ref.@17#.

Similarly, the standard deviation of the differential cum
lant d$3%, Eq. ~27!, is given by

~dd$3%!25
^w1

2&^w2
2&

2M2N8
~11x1

2!~11x2
2!, ~37!

whereN8 denotes the number of protons used in the diff
ential flow analysis. Using the relation~28! between this cu-
mulant and the differential flow,v18$3%, we easily obtain the
statistical error onv18$3%. Since the analysis is done in
narrow phase space bin, one may reasonably assume
that the error ond$3% is dominated by the error onv18$3%,
which yields

dv18$3%5
1

A2N8

A11x1
2

x1

A11x2
2

x2
. ~38!

This result can be understood simply in two limiting cas
When bothx1 andx2 are large compared to unity, the rea
tion planeFR can be reconstructed accurately. The error
^cos(c2FR)& estimated withN8 values ofc is then 1/A2N8,
to which the error reduces forx1@1, x2@1. In the opposite
casex1!1, x2!1, comparing Eqs.~35! and~37!, one finds
for unit weightsdv18$3%/dv1$3%5AMNevts/N8: errors scale
like the inverse square root of the number of particles
volved, and the determination of the integrated flowv1 in-
volves a total number ofMNevts particles while the differen-
tial flow v18 involvesN8 particles.

IV. HIGHER ORDERS

In the preceding section, we have studied the thr
particle correlation, which is the lowest-order nontrivial r
sult obtained with the generalized generating functio
Higher orders can also be derived in a straightforward w
Expanding the generating function of cumulantsC(z1 ,z2),
defined in Eq.~21!, in power series ofz1 , z1* , z2, andz2* ,
yields cumulants of arbitrary order,
5-7
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C~z1 ,z2![ (
j ,k,l ,m

z1*
j z1

kz2*
lz2

m

j !k! l !m!
^̂ ei [f11•••1f j 2f j 112•••2f j 1k12(f j 1k111•••1f j 1k1 l2f j 1k1 l 112•••2f j 1k1 l 1m)]&&. ~39!
ian
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The only relevant cumulants are those which are invar
under a simultaneous shift of all azimuthal anglesf j→f j
1a. Other cumulants vanish except for statistical fluctu
tions and detector effects. According to Eq.~19!, this shift is
equivalent to the change of variablesz1→z1e2 ia, z2
→z2e22ia. The only terms in Eq.~39! which are invariant
under this transformation are those withj 12l 5k12m. Any
of these cumulants can be used to extract the flow. Until n
we have explored only a few possibilities: the case con
ered in Sec. III is (j ,k,l ,m)5(2,0,0,1); the cumulants use
in Ref. @17# to extractv1 andv2 are those withj 5k, l 5m
ts

n
on

n

01490
t

-

,
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50 and those withj 5k50, l 5m ~denoted byc1$2 j % and
c2$2l %, respectively!.

We now derive the relations between cumulants of ar
trary orders and the flow coefficientsv1 and v2. For this
purpose, we compute the average value ofG(z1 ,z2) in the
presence of flow. We first average for a given orientation
the reaction planeFR . For an arbitrary particle, by definition
of vn , we may write^einfuFR&5vneinFR. Replacing in Eq.
~19!, dropping the weights for simplicity, and neglecting a
nonflow correlations, we obtain
^G~z1 ,z2!uFR&5S 11
z1* v1eiFR1z1v1e2 iFR1z2* v2e2iFR1z2v2e22iFR

M D M

.exp~z1* v1eiFR1z1v1e2 iFR!exp~z2* v2e2iFR1z2v2e22iFR!. ~40!
es-
te

-

in,

ew

the
ly-

rre-
s,
his

for

al-
The next step is to average overFR . We make use of the
following formula:

exp~z* eif1ze2 if!5 (
q52`

1`

e2 iqfS z

uzu D
q

I q~2uzu!, ~41!

whereI q is the modified Bessel function of orderq. Applying
this identity to each term of Eq.~40! and integrating over
FR , one obtains

^G~z1 ,z2!&5E
0

2p

^G~z1 ,z2!uFR&
dFR

2p

5 (
q52`

1` S z1*
2z2

uz1u2uz2u
D q

I 2q~2uz1uv1!I q~2uz2uv2!.

~42!

In the limiting casesz150 or z250, only the termq50
contributes to the sum in the rhs, and we recover^G(z1,0)&
5I 0(2uz1uv1), ^G(0,z2)&5I 0(2uz2uv2), already derived in
Ref. @17#.

Expanding the generating function of cumulan
C(z1 ,z2). ln^G(z1,z2)&, in powers ofz1 , z1* , z2 , z2* , and
identifying with Eq.~39!, one obtains the relations betwee
the various cumulants and flow. As expected, the only n
vanishing terms are those that satisfy the conditionj 12l
5k12m derived above, and the corresponding cumula
are proportional to (v1) j 1k(v2) l 1m, with an integer multipli-
cative constant depending on the values ofj ,k,l ,m. To order
z1*

2z2* z2
2, for instance, one obtains
,

-

ts

^̂ ei (f11f222f312f422f5)&&52~v1!2~v2!3. ~43!

If v2 is measured independently, this equation yields an
timate ofv1 from five-particle correlations, which we deno
by v1$5%. The statistical error onv1$5% is not much larger
than the error on the earlier three-particle estimatev1$3% if
v2 is large enough~more precisely, if the resolution param
eter x2;v2AM is larger than unity!. These higher orders
may be useful at RHIC, not at SPS wherev2 is too small.
Cumulants withj 1k.2 in Eq. ~39! involve higher powers
of v1 and are useless in the situation we are interested
namely small values ofv1.

V. DISCUSSION

In the preceding sections, we have presented a n
method for analyzing directed flow (v1), through the help of
an independent measurement of elliptic flow (v2). It allows
one to measure both integrated and differential flow,
value of integrated flow being used in the differential ana
sis.

Our method relies on a study ofthree-particle correla-
tions. Unlike standard methods, based on two-particle co
lations, it is not biased by two-particle nonflow correlation
which are an important bias at ultrarelativistic energies. T
can be checked experimentally by studyingv1 near midra-
pidity: while standard two-particle estimatesv1$2% generally
do not cross zero, especially if they are not corrected
momentum conservation@13#, our estimatev1$3% should
naturally vanish at midrapidity, as expected.

In experiments where analyses of directed flow are
5-8



es

te
y

d-

la

he
nt
w

n
w
fa
u
re

y

i

n
h

ac
E
e

ac

o
in

e
te
h

ef

or

axi-
ac-

ro-
ar-
te-

hat

ts

n

ics.

ed
ne,

nt

ANALYSIS OF DIRECTED FLOW FROM ELLIPTIC FLOW PHYSICAL REVIEW C66, 014905 ~2002!
ready available, it would be interesting to compare th
standard estimates from two-particle correlations,v1$2%,
with our new estimate from three-particle correlationsv1$3%.
If they are in agreement~within statistical error bars!, it is a
good hint that they indeed coincide with the true direc
flow. If they differ, it is instructive to study the centralit
dependence of the productM (v1$3%22v1$2%2), whereM is
the event multiplicity. If the difference betweenv1$2% and
v1$3% is due to two-particle nonflow correlations, this pro
uct should be approximately constant@25# ~remember that
two-particle nonflow correlations scale as 1/M .! If the prod-
uct differs significantly from a constant, then another exp
nation must be looked for: the difference betweenv1$2% and
v1$3% may be due to fluctuations, either fluctuations of t
impact parameter within a given centrality class of eve
@24#, or, more interestingly, physical fluctuations of the flo
event by event.

The price to pay for eliminating nonflow effects is a
increase in statistical errors, compared to standard t
particle methods. However, this increase is moderate, a
tor of 2 or less at SPS and RHIC. This new method is th
much less statistics demanding than those based on cor
tions between four~or more! particles. All in all, three-
particle correlations seem to be the most appropriate wa
measurev1 when it is small, and especially ifv2 is strong:
near the balance energy, at SPS, RHIC, and the forthcom
experiments at LHC.
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APPENDIX: ACCEPTANCE CORRECTIONS

In the case of a realistic detector, with a nonisotropic
ceptance, the relations between the cumulants and flow,
~24! and~28!, no longer hold. In this appendix, we derive th
relevant modifications taking into account the detector
ceptance.

In what follows, we assume that the various classes
events analyzed, for instance, the different centrality b
are determined with anindependentdetector~e.g., a zero
degree calorimeter!, which has a full azimuthal coverage~at
least approximately!. This is meant to make sure that th
centrality assigned to a given event is not strongly correla
to the orientation of its reaction plane, which would bias t
sample of events used in the flow analysis.

To describe a detector, we introduce its acceptance/
ciency functionA( j ,f,pT ,y), which is the probability that a
particle of typej with azimuthf, transverse momentumpT ,
and rapidityy be detected@17,22#. Obviously,A( j ,f,pT ,y)
will vary from a detector to another, and a ‘‘perfect’’ detect
corresponds toA( j ,f,pT ,y)51 for every particle type in
the whole phase space. In practice,A( j ,f,pT ,y) is propor-
tional to the number of hits in a (f,pT ,y) bin: to obtain its
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shape for a given detector and for each (pT ,y) bin, one only
has to count the number of hits in eachf bin while reading
the data to analyze them, and in the end divide by the m
mal number encountered. The Fourier coefficients of the
ceptance function are defined by

An~ j ,pT ,y![E
0

2p

A~ j ,f,pT ,y!e2 inf
df

2p
. ~A1a!

These differential coefficients can be integrated, with app
priate weighting and a sum over the various types of p
ticles used for the flow analysis, so as to describe the ‘‘in
grated’’ acceptance of the detector,

an@w#5
( jE w~ j ,pT ,y!An~ j ,pT ,y!dpTdy

( jE w~ j ,pT ,y!A0~ j ,pT ,y!,dpTdy

.

~A1b!

Note our introducing the weightsw( j ,pT ,y), which are of
course the same as in Eq.~18!, eitherw1( j ) or w2( j ). In the
following, we assume that both weights are equal, so t
there is only one set ofan coefficients. If two different
weights are used—a weightw1 that maximizesv1 and the
weight w2 that was used to derive the referencev2—one
should keep track of the two different sets of coefficien
an@w1#, an@w2# in the calculation that we now sketch.

To compute the contribution of flow to the cumulantc$3%,
we follow the same procedure as in Ref.@17#. We first aver-
age the generating function Eq.~18! over events with the
same azimuth of the reaction planeFR ; then we average
over FR . For simplicity, we neglect nonflow correlations i
the derivation. Denoting bŷxuFR& the average of a quantity
x for fixed FR , the average value ofeinf for a fixedFR is
given by @17#

^einfuFR&5an* 1 (
pÞ0

~ap2n2apan* !vpeipFR, ~A2!

where an* 5a2n is the complex conjugate ofan . Thus, a
nonisotropic acceptance mixes the various flow harmon
In the case of a perfect acceptance, Eqs.~A1! show that all
coefficientsan vanish, excepta051, and the identity~A2!
reads^einfuFR&5vneinFR, which follows in a straightfor-
ward way from Eq.~1!.

Inserting the average value, Eq.~A2! for n51 andn52
in Eq. ~18!, one obtains the generating function averag
over events with the same orientation of the reaction pla
^G(z1 ,z2)uFR&. The latter must then be averaged overFR ,
then one computes the cumulants using Eqs.~21! and ~39!,
keeping only the real part. In particular, the third cumula
reads

c$3%5Re~~12ua2u2!~12ua1u2!2

12@~a12a1* a2!2~a2* 2a1*
2!1~12ua1u2!ua3

2a1a2u21~a42a2
2!~a2* 2a1*

2!2# !v1
2v2 , ~A3!
5-9
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instead of Eq.~24!, where we have assumed that onlyv1 and
v2 are nonvanishing. When the detector is perfect, one
covers Eq.~24!. Even if the detector is not perfect, but ne
ertheless does not have too bad an acceptance, the fac
front of v1

2 v2 in Eq. ~A3! will remain close to 1, since the
correction terms are at least quadratic in thean coefficients.
Thus, Eq.~24! remains a good approximation, except f
detectors with a very bad azimuthal coverage.

The contribution of flow to the ‘‘differential’’ cumulant
d$3%, Eq. ~27!, can be calculated along the same lines.
that calculation, one may assume that integrated and di
ential flows are measured using two different detectors: e
a large acceptance detector for integrated flow, and a sm
one, but with better particle identification orpT determina-
tion, for differential flow. We thus denote byA8( j ,c,pT ,y)
the corresponding acceptance function and byAk8( j ,pT ,y) its
Fourier coefficients defined as in Eq.~A1a!. The differential
acceptance coefficientsak8 are then defined as in Eq.~A1b!,
without the weights and the summation overj ~since one
usually measures the differential flow of identified particle!
and with the integration overpT andy restricted to the phase
space region under interest~typically, one integrates ove
pT or y, so as to obtainv18 as a function ofy or pT ,
respectively!.
.
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The average value over protons in the numerator of
~26! is then computed in two steps, first averaging over p
tons detected in events with the same orientation of the
action plane, then averaging overFR . The denominator of
Eq. ~26!, ^G(z1 ,z2)uFR&, is the same as in the calculation o
c$3%. Finally, d$3% is given by the coefficient ofz1* z2 in the
expansion in power series ofD(z1 ,z2),

d$3%5Re@~12ua1u2!~12ua2u2!1~a12a1* a2!2a28*

1ua32a1a2u21~a2* 2a1*
2!~a42a2

2!a28* #v18v1v2

1Re@~12ua1u2!~a32a1a2!a38*

1~a2* 2a1*
2!~a12a1* a2!a18#v28v1

2 . ~A4!

A nonisotropic acceptance will cause interference betw
the various differential flow harmonics: the measuremen
directed differential flowv18 is perturbed by the elliptic dif-
ferential flowv28 . It is worth noting that as soon as the a
ceptance of the detector used for integrated flow is perf
Eq. ~A4! reduces to Eq.~28!.
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