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Metastable states in glassy systems
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Truly stable metastable states are an artifact of the mean-field approximation or the zero-temperature limit.
If such appealing concepts in glass theory as configurational entropy are to have a meaning beyond these
approximations, one needs to cast them in a form involving states with finite lifetimes. Starting from elemen-
tary examples and using the results of Gaveau and Schulman, we propose a simple expression for the con-
figurational entropy and revisit the question of taking flat averages over metastable states. The construction is
applicable to finite-dimensional systems, and we explicitly show that for simple mean-field glass models it
recovers, justifies, and generalizes the known results. The calculation emphasises the appearance of new
dynamical order parameters.
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I. INTRODUCTION

Slowly relaxing systems such as glasses or compac
granular media can be viewed as having fast, local, qu
equilibrium dynamics, plus a slow, nonequilibrium drif
These two superposed motions can take different for
‘‘cage’’ vibrations plus structural rearrangements in glass
bulk fluctuations plus domain-wall motion in coarseni
problems; etc. At a given long time, the fast motion cover
region of phase space which one may picture as a ‘‘m
stable state.’’

Even though metastable states are a familiar and app
ing concept, it turns out that defining them in an unambig
ous manner in non-mean-field models is quite subtle. Thi
turn has as a consequence that such standard ideas in
theory as ‘‘configurational entropy’’~related to the numbe
of metastable states! are not only hard to calculate, but a
indeed, with the exception of some fortunate cases, appr
mate asconcepts.

In this paper we show how these questions can be pu
a well defined basis using a formalism@1# that does not rely
on specifically mean-field concepts. First of all, given th
one can simulate and in certain cases calculate analytic
the complete history of a sample starting from a quench, w
should one have any need to introduce the apparently
needed notion of ‘‘metastable state’’? Indeed, these st
only come into play when one wishes to make argume
such as ‘‘phase space contains such and such a distrib
of states, which will be accessed with such and such a p
ability by a typical dynamical history. Long-time out of equ
librium observables can be directly calculated by averag
the observables over some subset of states—and furthe
erence to dynamics may be omitted.’’

This kind of ‘‘ergodic’’ argument was pioneered by Ed
wards@2#, who proposed that in compacting or slowly flow
ing granular systems one can obtain the correct dynam
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observables by averaging the values they take over
blocked configurations of a certain volume. It later turn
out that mean-field glass models@3,4# relaxing at zero tem-
perature had exactly Edwards’ ergodicity property@5#: at
long times any nonequilibrium observable is correctly giv
by the typical value it takes over all local energy minima
the appropriate energy density.

A first problem arises when one wishes to apply this co
cept at finite temperatures~or vibration, in the case of granu
lar media!. There again, the mean-field case offers a sugg
tion: at nonzero temperature Edwards’ argument works
well, provided one substitutes ‘‘energy minima’’ by ‘‘free
energy minima’’ ~‘‘states’’!. This construction is possible
because within mean field we have a well-defined notion
free-energy landscape, whose local minima are in some~but
not all! cases related to completely stable distributions. Ho
ever, as discussed by Franz and Virasoro@6#, one needs to
consider ‘‘quasistates’’ with finite lifetimes in order to un
derstand the situation at finite waiting times.

In finite-dimensional problems, a high-lying metastab
state cannot have an infinite lifetime: there is always a fin
probability of escape through the nucleation of a droplet o
more favorable phase. Hence, which distribution one con
ers as metastable depends always on which lifetimes on
considering. For example, the concept of ‘‘configuration
entropy’’ ~the logarithm of the number of states!, ubiquitous
in glass theory, has in finite dimensions only a meaning w
a time scale attached. Moreover, even the mere definitio
an Edwards distribution is not as simple, quite apart from
question of the validity of the ergodicitylike hypothesis
assumes.

In Sec. II we shall review the notion of metastable sta
within mean-field glass models and how the knowledge
their distribution allows us in certain cases to reprodu
some results obtained from the full solution of the out
equilibrium dynamics. We shall also mention some limit
tions found even at this level of the identification ‘‘free
energy minimum;stable state.’’

In Sec. III we discuss a strategy valid in any dimensi
for the definition and calculation of metastable states ba
on the evolution operator developed by Gaveau and Sc
man@1#. We discuss how one can thus recast the questio
e
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GIULIO BIROLI AND JORGE KURCHAN PHYSICAL REVIEW E64 016101
configurational entropy and Edwards’ distribution in a for
relevant in finite dimensions at nonzero temperature~or
stronger vibration, in the case of granular media! by consid-
ering finite-lifetime metastable states, in the spirit of t
‘‘quasistates’’ discussed in Ref.@6#.

In Sec. IV we apply this method to a simple mean-fie
glass model. We show how one can rederive in this way b
the number of states and the dynamics inside a state, w
a framework whose applicability goes beyond mean field

II. A FORTUNATE CASE: MEAN-FIELD MODELS

Consider the mean-field model of ferromagnet

E52
1

2N (
i , j

SiSj2h(
i

Si , ~1!

where the sum is over all spins. The spins can be Ising
561 or sphericalS iSi

25N. One can easily obtain a fre
energy in terms of local magnetizationsmi5^Si& ~where
^¯& means the average over the Gibbs measure!,

f ~$mi%!52
1

2N (
iÞ j

mimj2h(
i

mi2TS~$mi%!, ~2!

where T51/b denotes the temperature andS($mi%) is the
usual entropic term

S~$mi%!52i 12 @~12mi!ln(12mi)

S~$mi%!52i 12 @~12mi!ln(12mi)1(11mi)ln(11mi)] fo

5
1

2
ln~12q! spherical model ~3!

andNq5S i 51
N mi

2.
The states are represented by the minima off. At T,Tc

there are two, and the deeper one dominates the Boltzm
distribution. If h.0 one of the states becomes metastab
within mean field its lifetime is infinite, but in finite dimen
sions it will decay.

The TAP approach. Next, consider the glassy Hamilto
nians:

E52
1

p! (
i 1 ,...,i p

Ji 1 ,...,i p
Si 1

¯Si p
, ~4!

whereJi 1 ,...,i p
are independent random variables with va

ance p!/2Np21. The Ising version with p52 is the
Sherrington-Kirkpatrick model, the mean-field version
spin glasses. The models withp>3 are instead systems ha
ing a behavior resemblingstructural glasses@7,8#.

It turns out that one can find for these models a free
ergy function analogous to Eq.~2! ~the ‘‘TAP’’ free energy
@9#!, in terms of local magnetizationsmi :
01610
th
in

i

Si561

nn
:

f

-

f TAP~$mi%!52
1

p! (
i 1 ,...,i p

Ji 1 ,...,i p
mi 1

¯mi p

2
b

4
@12qp2pqp21~12q!#2TS~$mi%!,

~5!

where Nq5S imi
2 and S($mi%) is given in Eq.~3! for the

spherical and Ising cases, respectively.
Within the TAP approach, one signature of the glass tr

sition is the fact that the free energy~5! has, below a critical
temperature, many (;eaN) minima @10–13#. The main dif-
ference between mean-field versions ofspin and structural
glasses is seen, in the TAP approach, in the way states
separated.

Given the analogies with the ferromagnet, it seems v
tempting to attribute to the minima of Eq.~5! a dynamical
meaning of ‘‘state.’’ For the models withp>3 this has been
done@14,15# by starting from a configuration where the c
ordinates are as close as possible to having a givenmi

a , and
then checking that the subsequent dynamical evolution
stable, quasiequilibrium situation confined to a region
phase space in such a way that^Si& time average5mi

a .
On the contrary, for models such as the Sherringt

Kirkpatrick model the identification of all TAP minima with
stable states seems to breaks down. Let us formulate a
ristic argument to see this. Decreasing temperature, min
split in a second-order transition manner. At least a fract
of the minima are ‘‘born’’ this way@16#, and to get an ex-
ponential number of minima one needs that on average t
is a division everyO(1/N) change in temperature. Hence,
fraction of TAP solutions are justO(1/N) below their critical
temperature, and under those circumstances barriers ca
be large enough to dynamically separate them from th
‘‘twins.’’

FDT temperature. Long-time out of equilibrium obser
ables. The dynamics of model~4! following a quench below
the critical temperature can be solved analytically@17,4#.
One finds that the system never equilibrates, and rem
aging just above a threshold level of energy densityeth and
free energy densityf th higher than the equilibrium ones
Given any two observablesA and B, one can define their
dynamic correlation function

CAB~ t,t8!5^A~ t !B~ t8!& ~6!

and the integrated responsexAB to a fieldhB conjugate toB
acting continuously between timest8 and t:

xAB~ t,t8!5
d^A~ t !&

dhB
, ~7!

where the averages are over the dynamical realization.
If one makes a parametric plot ofxAB(t,t8) versus

CAB(t,t8) one obtains for model~4! with p.2 at long times
a curve as in Fig. 1. One has in addition to the straight l
with gradient21/T ~as in equilibrium!, another straight line
of gradient, say,21/Teff , associated to the slow relaxatio
1-2
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METASTABLE STATES IN GLASSY SYSTEMS PHYSICAL REVIEW E64 016101
Teff is the same for every pair of observablesA andB, and it
can be shown@18# that it satisfies all the properties of a tru
temperature.

The appearance of a temperature in a system is an ind
tion of some form of ergodicity, in this case clearly not t
usual Gibbs-Boltzmann equilibrium at temperatureT. In-
deed, soon after the dynamical solution was obtained, M
nasson and Virasoro@19,20# observed that the temperatu
Teff could be reobtained from the TAP approach witho
making any reference to the dynamics: Defining the co
plexity ~or configurational entropy! S( f ) as the logarithm of
the number of TAP solutions of a given free energy, o
checks that

1

Teff
5

dS~ f !

] f U
f 5 f th

. ~8!

How this equality follows from Edwards’ assumption is di
cussed in Ref.@6#.

Furthermore, one can also see that the long-time value
macroscopic observables are given by the flat averag
their values taken over all TAP solutions of the dynami
energy densityeth . Hence, we have a strong indication for
measure in the manner of Edwards, this time applied to T
states.

If the system has large, but finite size, it will slowly a
proach equilibrium. In that case, a plot similar to Fig. 1 w
show that the two tracts slowly tend to become parallel a
Teff(t) ~now a function of time! tends toT. Inspired by the
work of Bonilla et al. @21#, Nieuwenhuzen@22# conjectured
that one could extend the relation~8! for all times, using the
TAP solutions of the energy level appropriate at each tim

Later on, a two-temperaturex versusC plot ~and hence
the existence of an FDT temperatureTeff was seen to occu
in realistic models such as three-dimensional Lennard-Jo
glasses@23–26#. Several of these simulations where pe
formed at temperaturesabovethe putative equilibrium glass
temperature, so that the existence of a~slowly evolving!
well-definedTeff is surely a dynamical phenomenon, unr
lated to the structure of equilibrium states. If one wishes
consider this as a symptom of slowly evolving flat distrib
tion between metastable states, one finds oneself in the

FIG. 1. A fluctuation-dissipation plot. The straight line to th
left defines the effective temperature.
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barrassing situation that it is not entirely obvious what o
means by ‘‘metastable state’’ in finite dimensions, as
now discuss.

The problem with finite dimensional and driven system.
In finite dimensions and nonzero temperature nucleation
guments suggest that a distribution with dynamical free
ergy density~to be defined below! higher than the equilib-
rium one should decay through nucleation in finite times. W
are hence in a situation in which we have no absolute no
of state without making reference to a time scale~and hence
to dynamics!: two different distributions may be confuse
into a single state or be treated as two separate entities
pending on whether the time to go from one to the othe
smaller than or larger than the time scale considered.

If we are interested in systems driven by shear or by
bration, we have the additional problem that even in
mean-field case the distribution is not Gibbsian within
state. In a vibrated case, the notion of stability must be s
stituted by the notion of periodicity, so that a ‘‘state’’ wi
turn out to be a structure periodic in time.

Before entering into the present approach, let us men
that a pragmatic way of dealing with these difficulties,
least at very short time-scales, is the so-called ‘‘inher
structure’’ construction@27#. Though it does not solve the
questions of principle mentioned above@28#, it offers a prac-
tical way around applicable to concrete problems.

III. DYNAMICAL DEFINITION OF METASTABLE STATES

Let us consider a system evolving with stochastic dyna
ics, which for definiteness we shall consider is of the Lan
vin form. The probability distribution will evolve according
to

dP~S,t !

dt
52HP~S,t !,

H52
]

]Si
S T

]

]Si
1

]E

]Si
D , ~9!

whereH is the Fokker-Planck operator. The potential ener
E can be time-dependent, and furthermore one can ad
(]E/]Si) forces that do not derive from a potential.

Given a probability distributionP, one can define a dy
namic free energy

F~ t !5E @TP~S,t !ln P~S,t !1E~S!P~S,t !#ds. ~10!

If H is time-independent, any stationary configuration sa
fies

HPstationary50. ~11!

Moreover, writing any distribution as P(x,t)
5Sci(t)c i(x), wherec i(x) are the right eigenvectors ofH

Huc i&5l i uc i&, ~12!

the evolution equation~9! implies
1-3
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GIULIO BIROLI AND JORGE KURCHAN PHYSICAL REVIEW E64 016101
ci~ t !5ci
0e2l i t ~13!

We see that ifP is to vary slowly it has to be concentrated o
eigenvectors with low eigenvaluesl i . Indeed, eachl i is an
inverse time scale@29,30#. In the following subsections we
shall motivate and discuss an identification of the set
small eigenvaluec i ’s with metastable states.

Motivation. Consider first the system of two hard dis
performing Langevin dynamics in a box~Fig. 2!. Clearly, if
the disks are really not interpenetrable, there are two dif
ent ergodic components, each composed of the mirror im
of the configurations of the other. Symmetry implies that
spectrum of the Fokker-Planck operator is doubly degen
ate. The two lowest~zero! eigenvalues correspond to tw
stationary distributions. One can construct an associated
genvector as the flat distribution over all pairs of coordina
of the centers of the disks such that they do not superp
and such that the ‘‘disk A’’ is to the right and ‘‘disk B’’ to
the left, and similarly a second eigenvector correspondin
having the disk B to the right and A to the left. These are
‘‘pure states’’: any linear combination of these two distrib
tions will be an ‘‘impure’’ state. The next higher eigenvalu
are equal to the inverse of the time needed for the particle
explore their ergodic component. Note, in passing, that
hard-spheres system is the typical example in which the
herent structure construction is not meaningful while
present one has no problem.

In this example we have strictly two ergodic componen
corresponding to twofold ground state degeneracy of
Fokker-Planck operator. This is indeed very general: supp
we havep ergodic componentsC1 ,...,Cp , with typical times
t1 ,...,tp required to explore each component. We can c
struct an independent eigenvector with zero eigenvalue u
the stationary distributionPa(x) restricted to each compo
nent Ca . These completely span the zero eigenvalue s
space. To show this, we calculate

tr@e2t* H#5E dxE dy^xue2~ t* /2!Huy&^yue2~ t* /2!Hux&

5 (
a51

p

(
b51

p E
xPCa

dxE
yPCb

dy^xue2~ t* /2!Huy&

3^yue2~ t* /2!Hux&

5 (
a51

p E
xPCa

dxE
yPCa

dy^xue2~ t* /2!Huy&

3^yue2~ t* /2!Hux&. ~14!

If we now take t* much larger than all thet i ,

^yue2(t* /2)Hux&.Pa(y), the equilibrium probability fory re-
stricted to the ergodic componenta to which x belongs.
Hence,

tr@e2t* H#. (
a51

p

(
b51

p E
xPCa

dxE
yPCa

dyP~x!P~y!.p.

~15!
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This shows that the number of states ‘‘below the gap’’ co
cides with the number of ergodic components.

In the preceding examples the ergodic components
strictly separated. However, in most applications this is
the case: there is in fact a passage time between compon
that only becomes infinite in some limit. To understand t
construction in these cases, consider a very low-tempera
Langevin process occurring in asymmetric and symme
double-well potentials as in Fig. 3. On the left of the figu
we show the lowest levels of the spectrum for both cas
and at the top the corresponding eigenvectors. For the as
metric case, the two lowest eigenvalues are separated b
inverse Arrhenius escape time from the highest minimu
All other eigenvalues are much higher@O(1)#, and include
the escape time from a maximum, etc. The eigenfunct
labeleda is essentially positive and represents a ‘‘pure’’ sta
P1 , while one can make a linear combinationP25(a1b)
that will also be positive and concentrated on the metasta
minimum. For the symmetric well the situation is similar, b
now it is the linear combinationsP15(a1b) and P25(a
2b) that play the role of ‘‘pure’’ states. Any other comb
nation of the formyP11(12y)P2 with 0,y,1 will give
an ‘‘impure’’ ~almost! steady state. Note that these defin
tions make sense in the time window in which we can co
sider the exponential Arrhenius times much larger that a
other time involved@O(1)#, and this will happen only in the
low-temperature limit.

FIG. 2. A system with two ergodic components.

FIG. 3. A sketch of eigenfunctions and spectrum of the Fokk
Planck operator at low temperature.
1-4



al

ro

le

tw
e

,
a
p
t

ur
t

r t
io
e

a

te
, t
ce

s

la
is

r

in

r-
mal-
he
ales
e

o a
ny
ur-
re-

at

of
e’’
ch
he

ot
s.
di-

es-
ion

he
y,
on-

as
a

ich

es
cted
.
dle
ion
n-

tion
on-

e
can
isting

r
this

METASTABLE STATES IN GLASSY SYSTEMS PHYSICAL REVIEW E64 016101
If the temperature is nonzero, a separation of time sc
can happen as a result of the thermodynamical~or other!
limit. For example, it is easy to see that a mean-field fer
magnet at 0,T,Tc will have a similar spectrum, but withN
playing the role of large parameter instead of 1/T. The case
of finite-dimensional ferromagnets is slightly more subt
we have there a timescale for domain excitations within
state that can be as large as a power law inN ~the time it
takes for a large domain to collapse!, and a much longer time

scale (;ecN(d21)/d
) for going from one phase to the other.

The construction of Gaveau and Schulman. In general, the
low eigenvalue spectrum can correspond to more than
eigenvectors. One can now ask in general whether all th
eignevectors~or combinations of them! represent positive
stable distributions, and whether one can construct as m
pure states as there are low eigenvalues. In a series of pa
@1#, Gaveau, Schulman, and Lesne showed this to be
case, gave recipes for the explicit construction of the p
states, proved their unicity and exploited this construction
study metastability.

We shall be only descriptive here, we refer the reade
the references for the proofs, as well as other investigat
concerning metastability. Consider, for example, a Fokk
Planck operator having the lowestp eigenvaluesl1 ,...,lp
separated by a gap from the others, i.e., one can findt*
such that one can consider that

t* l i!1 for i 51, . . . ,p,

t* l i@1 for i 5p11, . . . . ~16!

In the previous simple example anyt* such thatt* is posi-
tive will satisfy this asT→0. The meaning oft* is clear: it
is a time scale much longer than the relaxation into sta
but much shorter than transitions between states. Clearly
operator exp@2t*H# is essentially a projector onto the spa
‘‘below the gap’’ ~up to terms of order exp@2t*li#, with i
<p!. Within the same accuracy, one can then find a basi
p right eigenvectorsuPi& which are positive:Pi(x)5^xuPi&
>0; almost stationary:HuPi&;0, ; i 51, . . . ,p; normalized
and not zero in nonoverlapping regions of space. The
property is related to the fact that one can also find a bas
p approximate almost stationary (^Qi uH;0) left eigenvec-
tors ^Qi u, such that eachQi is essentially one within the
support ofPi(x), zero everywhere else and satisfy the o
thogonality and normalization conditions

^Qi uPj&;d i j . ~17!

Given any observableA, we can calculate its average with
the state ‘‘i’’ as

^A& i5^Qi uAuPi&. ~18!

One can also write approximately

e2t* H;(
i

uPi&^Qi u. ~19!
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As a consequence theuPi& vectors have all the good prope
ties to represents metastable states: they are positive nor
ized distributions, nonzero only on different regions of t
configuration space and they are stationary on time sc
less thant* . In the proof, as in the simple example of th
previous subsection, the definition is unavoidably linked t
time scale: if one considers really infinite times, before a
other limit, then the distinction between states vanishes. F
thermore, it is assumed the number of states so defined
mains finite in the thermodynamic limit. We believe th
going to situations in which this is not the case~as we will
below! is indeed not entirely innocent, but is at the heart
quite a few problems associated to the definition of ‘‘stat
in glassy systems.~We have already encountered su
subtleties when we discussed TAP minima in t
Sherrington-Kirkpatrick model!.

Driven systems. The construction described above is n
limited to purely relaxational or time-independent system
Consider for example the case in which a system is perio
cally ‘‘vibrated’’ or ‘‘trapped.’’ One can still try to look for
stationary, or rather, periodic situations. One can repeat
sentially the same argument by considering the evolut
operator through one cycle:

U5TE
cycle

dte2tH~ t !, ~20!

whereT denotes time order. One has to look now for t
eigenvectors ofU whose eigenvalue is close to 1. Similarl
one can also work with systems driven by constant nonc
servative forces~as in a sheared fluid!, and with nonlinear
space-dependent friction~as in granular systems!.

Pure barriers. Given that pure states can be viewed
playing the role for finite temperature that energy minim
play for zero temperature, one is naturally led to ask wh
distributions play the role of barriers~or in general saddle
points! in finite temperature. For Fokker-Planck process
this can be done naturally starting from the states constru
as above. In Appendix A we show how this can be done

We remark that a solvable example, in which sad
points play an important role in the spectrum of the evolut
operators, is the Glauber evolution of the completely co
nected Ising model and its generalization@30#. It has been
found that the lowest eigenvalues, i.e., the longest relaxa
times, are gathered in families, each one being in corresp
dence with a stationary,not necessarily stable, point of the
static mean field free energy.

IV. FLAT DISTRIBUTION OVER STATES AT FINITE
TEMPERATURE OR VIBRATION: A DEFINITION

OF CONFIGURATIONAL ENTROPY

Motivation. As we mentioned in Sec. II, the fact that on
finds a two-temperature behavior in mean-field glasses
be seen as suggesting the relevance of a measure cons
in summing over metastable states of given energy~or free
energy! with equal weight. Armed with the construction fo
metastable states we discussed above, we shall see how
1-5
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GIULIO BIROLI AND JORGE KURCHAN PHYSICAL REVIEW E64 016101
measure can be expressed in finite-dimensional or peri
cally driven systems.

Expressions. Consider, in the spirit of Edwards’ distribu
tion, an average of an observable over states, each mea
with equal weight. This will be relevant for the long-time o
of equilibrium dynamics under the assumption that almost
states of given energy have the same basin of attraction

Using the same notation as in the previous section,
define the average over the measure^^¯&& of an observable
A in the following way:

^^A&& t* 5
1

p (
i 51

p

^A& i , ~21!

where the subindext* reminds us of the fact that states a
now defined according to their time scale. We have

(
i 51

p

^A& i5(
i 51

p

^Qi uAuPi&5(
i 51

p

tr@ uPi&^Qi uA#5tr@e2t* HA#,

~22!

where we have used Eqs.~18! and ~19!. Hence,

^^A&& t* 5
tr@e2t* HA#

tr@e2t* H#
. ~23!

Note that once written this way, all reference to pure sta
has disappeared, except indirectly in the value chosen fort* .

We often need an equation similar to Eq.~23!, but are
restricted to states having a certain energy, particle num
etc. In that case we generalize Eq.~23! as, for example,

^^A&& t* ~E0!5
tr@d~E2E0!e2t* HA#

tr@d~E2E0!e2t* H#
5

trE0
@e2t* HA#

trE0
@e2t* H#

,

~24!

where trE0
denotes a restricted trace.

Once we make the assumption that all states of the s
energy~or particle number, etc.! have an equal weight for th
purposes of calculating a dynamical observable, it beco
meaningful to count their number at given energy, the c
figurational entropy:

St* ~E0![ ln tr@d~E2E0!e2t* H#5 ln trE0
@e2t* H#. ~25!

If t* →0 we get the microcanonical measure~and entropy,
up to irrelevant constants@31#!, and if we lett* →` we find
no high-lying metastable states at all in finite dimensio
The dependence ont* is hence unavoidable if one is to ob
tain a finite configurational entropy in that case.

Equation~25! defines the time scale-dependent configu
tional entropy. One also needs the average entropywithin a
state st* , and the corresponding average free energy o
state f t* 5E02Tst* . Using the construction of Eqs.~17!,
~18!, and~19!, we have
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st* ~E0!5
*x/E~x!5E0

dx^xue2t* Hux& ln@^xue2t* Hux&#

*x8/E~x8!5E0
dx8^x8ue2t* Hux8&

.

~26!

The meaning of this equation becomes transparent in
example of the completely separated ergodic component
the previous section.

Note that also the intrastate entropy is time scale dep
dent. Indeed, if we sett* →0, we are defining as ‘‘states’
the configurations themselves@31#. On the other extreme, i
t* is longer than the equilibration time,^x8ue2t* Hux8& gives
the Gibbs measure, and the intrastate entropy becomes
usual entropy. In short: changing the time scale both chan
the number of states and their nature, hence the chang
configurational and intrastate entropy, respectively.

Flat measures and effective temperatures. Suppose we
have a glassy system, taken through a given thermal his
~an annealing protocol! to a glassy phase at timet, at which
time its energy isE(t)5E0 ~and if we let the particle numbe
or the volume change we should specify also them!. The
assumption of typicality of metastable states, is then

^^A&& t* ~E0!5
trE0

@e2t* HA#

trE0
@e2t* H#

;^A&history, ~27!

where the average is over several realisations of the s
protocol, ending at timet with energyE(t)5E0 .

From the Langevin point of view, the left-hand side of E
~27! corresponds to adding over all periodic trajectories st
ing from an energyE0 with periodt* . Equation~27! tells us
that thermal histories give the same result as a very partic
set of trajectories, in a manner analogous as when one
resents chaotic dynamical systems by using only the perio
orbits.

In the zero temperature mean-field case, we can set*
5` in Eq. ~27!, and thus select the states with infinite life
time. This is Edwards’ prescription for granular media (T
;0) and the one we discussed above within mean field
finite dimensions, where metastable states eventually nu
ate, we are forced to givet* a finite value. The fact that the
choice oft* is not unique already tells us that Eq.~27! will
be an approximation.

The central remaining question now is what is a reas
able value fort* . Indeed, giving a value oft* determines a
configurational entropySt* (E0) and an intrastate free en
ergy: f t* (E0)5E02Tst* (E0). This in turn determines a
temperature associated with the time scale as

Tt* [F]St*
] f t*

G21

~28!

~where we have eliminated the energy in favor off t* !. It
seems now natural to compare the different relaxation tim
of the correlations in a given problem witht* . For example,
glassy systems can often be described with two time scale
fast ~‘‘ b’’ ! relaxation and a slow~waiting time dependent if
1-6
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the system is aging! ‘‘ a relaxation’’ ta . If t* is small (t*
!tb), Eq. ~28! givesTeff;T @31#. If we put instead

tb!t* &ta , ~29!

then Tt* may be different~larger! than T. This is the tem-
perature to compare with the one governing the relation
tween correlation and response in the regime correspon
to thea relaxation@32#.

There are cases in which the ‘‘slow’’ relaxations happ
in several time scales, becoming more and more differen
aging proceeds@4#. Then, the definition~28! immediately
yields a different temperature for every widely separa
time scale, and this would agree with what one obser
from fluctuation-dissipation relations@4#.

Time-dependent order parameters. We are interested in
calculating two-time correlation functions

^A~ t !B~ t8!&[
1

N tr@e2~ t* 2t !HAe2~ t2t8!HBe2t8H#

5
1

N tr@e2~ t* 2t!HAe2tHB#5^AB&~t!,

~30!

wheret5t2t8, andN is the normalization. Cyclic permu
tation implies

^AB&~t!5^BA&~ t* 2t!. ~31!

If H is a time-dependent Fokker-Planck operator, ass
ated with forces deriving from a potentialE, we have

ebEHe2bE5H†. ~32!

Using Eq.~32! in Eq. ~30! we get the time-reversal propert

^AB&~t!5tr* @e2~ t* 2t!H~ebEBe2bE!†e2tH~ebEAe2bE!†#

5^B̃Ã&~t!, ~33!

whereÃ[(ebEAe2bE)† and B̃[(ebEBe2bE)†

We shall need to consider the cases in whichA andB are,
respectively,Si andŜi[2]/]Si . Let us define, for a system
of N degrees of freedom

C~ t2t8!5C~t!5
1

N (
i

^Si~ t !Si~ t8!&,

R~ t2t8!5R~t!5
1

N (
i

^Si~ t !Ŝi~ t8!&,

D~ t2t8!5D~t!5
1

N (
i

^Ŝi~ t !Ŝi~ t8!&. ~34!

Because we are considering periodic trajectories, cau
ity is violated. This means that neitherD(t) nor R(t) for
negativet need to be zero. However, it is easy to show t
if ( t* 2t) is larger than the thermalization time~in which the
system is projected to its Gibbs measure!, then we recover
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D(t)50 and R(t)R(2t)50. The existence of solution
violating causality fort* large is then a symptom of larg
equilibration times, i.e., of glassiness.

Using the time-reversal equation~33!, it is easy to derive
a noncausal form of FDT, valid for anyt* :

]

]t8
C~ t2t8!5T$R~t!2R~2t!%. ~35!

The physical meaning ofD, unlike that ofC andR, is unfa-
miliar. If we couple the states to a time-dependent, rand
magnetic ‘‘pinning fields’’ @19# hi such thathi(t)hj (t8)
5F(t,t8)d i j , the fields will make a change in the number
metastable states, and it is easy to show that

D~ t,t8!5
1

N

d

dF~ t,t8!
ln$tr@e2t* H#%. ~36!

It is hence clear that systems with a finite number of sta
will have D50 in the long-time limit.

V. THE CALCULATION

In the following we apply the theory discussed above t
simple glassy system: the spherical version of model~4!.
These models are thought to be mean-field versions of st
tural glasses, we shall not deal in this paper with mod
corresponding to spin glasses for which, as mentioned ab
we do not expect the present computation of states to b
correspondence with the TAP-equation-based calculation
the literature.

The trace of the Fokker-Planck operator, at a fixed ene
densityE, can be written as a functional integral@33# over
the spin fieldsSi(t) and the response fieldsŜi(t) with peri-
odic boundary conditions onSi(t). Once the average of th
trace has been performed@34#, the action depends on th
fields Si(t) and Ŝi(t) through the two time functions
C(t,t8),R(t,t8),D(t,t8) only. As a consequence one can i
tegrate out the fieldsSi(t) and Ŝi(t) and get an effective
action on two time functions:

S/N52E
0

t*
dt@] tR~ t,t8!1lR~ t,t8!2TD~ t,t8!#u t85t1

1
p

4 E0

t*
dtdt8@D~ t,t8!Cp21~ t,t8!

1~p21!R~ t,t8!R~ t8,t !Cp22~ t,t8!#

2
l̂

2 E
0

t*
dt@C~ t,t !21#1

1

2
Tr ln M , ~37!

where the operatorM reads

M5S R~ t,t8! C~ t,t8!

D~ t,t8! R~ t8,t !
D . ~38!

Since we consider times of order one with respect toN the
functional integral is dominated by a saddle point contrib
1-7
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tion. We shall obtain periodic dynamic solutions which,
the glassy phase~a! break causality,~b! have nonzero action
~c! satisfy time-translational invariance, and~d! satisfy time-
reversal and its consequence~35!. Note that~a! and ~b! are
properties typical of instantons, while~c! and~d! are not. In
the high-temperature phase there is a periodic solution w
zero action for long times corresponding essentially to
equilibrium dynamics.

The stationarity conditions on the action are equivalen
four equations on the two-time functions

C8~t!52lC~t!12TR~2t!

1
p

2 E0

t*
dt9Cp21~ t2t9!R~ t82t9!

1kE
0

t*
R~ t2t9!Cp22~ t2t9!C~ t92t8!dt9,

~39!

R8~t!52lR~t!12TD~t!

1
p

2 E0

t*
dt9Cp21~ t2t9!D~ t82t9!

1kE
0

t*
dt9Cp22~ t2t9!R~ t2t9!R~ t92t8!1d~t!,

~40!

R8~t!52lR~t!1kE
0

t*
dt9D~ t82t9!Cp22~ t82t9!

3C~ t2t9!1kE
0

t*
dt9Cp22~ t82t9!R~ t2t9!

3R~ t92t8!1k~p22!E
0

t*
dt9Cp23~ t82t9!

3R~ t82t9!R~ t92t8!C~ t2t9!2l̂C~ t2t8!1d~t!,

~41!

2D8~t!52lD~t!1kE
0

t*
dt9D~ t82t9!R~ t92t !

3Cp22~ t2t9!1kE
0

t*
dt9D~ t2t9!

3Cp22~ t2t9!R~ t92t8!1k~p22!

3E
0

t*
dt9R~ t2t9!R~ t92t !R~ t92t8!

3Cp23~ t2t9!2l̂R~t!,

wherek5p(p21)/2 and we make explicitly use of the tim
translation invariancet5t2t8. The spherical condition fix
the value ofl̂, which can be obtained subtracting Eq.~41!
from Eq. ~40! for t50:
01610
th
e

o

l̂5~p22!S p/2E
0

t

dt9Cp21~ t2t9!D~ t2t9!

1kE
0

t

dt9R~ t2t9!R~ t92t !Cp22~ t2t9! D 22TD~0!.

~42!

Moreover fixing the value of the energyE gives an equation
on the spherical multiplierl:

pE52l1T@R~01!1R~02!#. ~43!

As a consequenceE and l are directly related. Using the
FDT relation one can show that Eqs.~39!–~42! reduce to a
set of three independent equations on the functionsC(t),
R(t)1R(2t), andD(t).

A. Time-reversal, noncausal solutions

Let us show that computing for very larget* the trace of
the Fokker-Planck operator one can recover the numbe
stable states, and the dynamics within these states. The n
ber of stable states can be obtained by a pure static com
tation for thep-spin spherical model (p.2) using the TAP
equations@13#.

For very larget* there are two possible behaviors for th
two-time functions depending on the energy~and the model!
we consider.

If at the energy value considered there are stable st
then the action evaluated in the solution has a well defi
limit as t* →`. In this same limit, one expects that the tw
time functions for finitet describe the dynamics inside
stable state~as calculated previously with other metho
@14#!. A careful analysis of equations~39!–~42! allows one
to show that the asymptotic forms of two-time quantiti
reads fort!t*

C~t!5Cc~t!1
1

t*
Ĉ~t!, R~t!5Rc~t!

1
1

t*
@R̂~t!1r 2r c#, ~44!

D~t!5
1

t*
D0~t!1

1

~ t* !2 D̂ S t

t* D . ~45!

The functionRc(t) is causal, and for larget ~but small with
respect tot* ! we have thatRc(t)→0 andCc(t)→q. To-
getherRc andCc describe the relaxation within a state. A
other functions are of order 1 when their arguments are
order 1, and tend to zero when their argument is large.
corrections of order 1/t* are not subleading in the computa
tion of the trace, as this involves integrals over a large int
val @0,t* #. The Edwards-Anderson parameterq and r 2r c
are order one constants to be determined in what follo
Note that the scaling ofD implies thatl̂ is of order 1/t* .
One can easily check thatCc(t) andRc(t) satisfy the equa-
tions describing the equilibrium dynamics inside a state st
ied in Ref.@14#:
1-8
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Cc8~t!5lCc~t!1p/2E
0

t*
dt9Cc

p21~ t2t9!Rc~ t82t9!

1kE
0

L

Rc~ t2t9!Cc
p22~ t2t9!

3Cc~ t92t8!dt91p2qp21~r 2r c!/2. ~46!

Rc(t) is causal and related to the correlation functi
through the FDT relationRc(t)521/TCc8(t)u(t).

If for the energy value considered there are no sta
states then the behavior of the two-time functions is sim
to the previous one except thatD has a part of order of one
for finite time D0 and a part of order or 1/t* for t;t* :

D~t!5D0~t!1
1

~ t* !
D̂S t

t* D . ~47!

As a consequenceC(t) and R(t) do not satisfy equations
‘‘within a state,’’ and one has to solve a set of three eq
tions onC, R, andD in which R is not causal also for infinite
times (t* ).

In the rest of this subsection we consider an energy s
that stable states exists and we compute the zero-frequ
values ofC, R, andD. Using the asymptotic form introduce
before one finds

E
0

t*
C~t!dt5qt* 1O~1!, ~48!

E
0

t*
Rc~t!dt5tc5

12q

T
, ~49!

E
0

t*
R~t!dt5E

0

t*
Rc~t!1r 2r c1O~1/t* !5r 1O~1/t* !,

~50!

E
0

t*
D~t!dt5

d

t*
1O@1/~ t* !2#. ~51!

Moreover for larget* the relation~43! reduces to the usua
onepE52l1T/21O(1/t* ). Therefore we can considerl
as a fixed parameter.

Integrating Eq.~39! between 0 andt* and taking the lead-
ing order int* we obtain

qS 2l1
p

2T
~12q!qp221

p

2T
~12qp21!

1
p2

2
~r 2r c!q

p22D50. ~52!

Subtracting Eq.~39! evaluated int50 to Eq.~52! we get the
usual equation onl andq:

l5
T

12q
1

p

2T
~12qp21!. ~53!
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Since the spherical multiplier is a parameter, this equat
fixes the overlap. It is useful to write this equation in a w
which is directly related to the static computation. Using t
notation

qp/221pE52l1
p

2T
~12qp21!2

p~p21!

2T
qp22~12q!,

z5~12q!pp/221/T, ~54!

whereE corresponds to the zero-temperature or radial ene
which appear in the static computation, one can rewrite
~53! as the usual static equation onq @13#

11pzE1p~p21!z2/250. ~55!

From Eq.~52! we find the value ofr:

r 52
2

p
q12p/2E. ~56!

Integrating Eq.~40! between 0 andt* and using Eq.~52! we
get the value ofd:

qp21d522/p14E2/p2. ~57!

Finally we confirm, using the relationship betweenl andq,
that the equations onCc(t) and Rc(t) ~46! are indeed the
same ones found in Ref.@14# for the relaxational dynamics
inside the stable state with overlapq and energyE5(2l
1T/2)/p.

B. The configurational entropy

To obtain the number of stable states we have to inject
solution of Eqs.~39!–~42! into the action~37! and then take
the long time limit. Using the compact notationQ(t;t* )
5@C(t;t* ),R(t;t* ),D(t;t* )# for the set of the two-time
functions, we decompose the asymptotic solution
Q(t;t* )5Q0(t;t* )1Q1(t;t* )/t* , whereQ0 reads

Q0~t;t* !5S Cc~t!,Rc~t!1
r 2r c

t*
,

d

~ t* !2D ~58!

andCc(t),Rc(t) are the solution of the relaxational dynam
ics inside a stable state~46! with the values ofr, r c , d
determined above. Using this decomposition and the fact
Q is a saddle point of Eq.~37! we find for very larget*

S~Q!.S~Q0!2
1

2

Q1

t*
^

d2S

dQ2 ^
Q1

t*
1¯ , t* @1. ~59!

An explicit computation shows that the second term of E
~59! vanishes in the long time limit provided that the corre
tions toq are of an order less than 1/t* . This seems natura
to us since we are considering the relaxation dynamics in
a stable state. As a consequence the~annealed average o
the! logarithm of the number of stable states coincides w
S(Q0). When we injectQ0 into Eq. ~37! the first two lines
can be easily computed and read
1-9
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2l~r 2r c!1
p

4
dqp211

p

2T
~r 2r c!~12qp21!

1
p~p21!

4
~r 2r c!

2qp22, ~60!

whereas the computation of the third one, which redu
only to Tr ln M /2, is slightly more subtle. Since the operat
~38! is diagonal in Fourier space, we get

1

2
Tr ln M5

1

2
ln~r 22qd!1

1

2 (
vÞ0

lnS R̂~v! Ĉ~v!

0 R̂* ~v!
D ,

~61!

where the Fourier transform of a functionF(t) is defined as

F̂~v!5E
0

t*
e2 ivtF~t!dt, v5

2pn

t*
n50,61,62, . . . .

~62!

The functionRc(t,t8) is causal and the associated operato
upper triangular with diagonal elements equal to unity.
determinant hence is one~here the Ito convention is crucial!,
as it should because it does not give any contribution to
action in the standard case. As a consequence we have

1

2 (
vÞ0

lnS R̂~v! Ĉ~v!

0 R̂* ~v!
D 52 ln~r c!. ~63!

Collecting all the pieces together and using the equation
q, r, r c and d obtained in Sec. V A we find that the actio
S(Q0) reads

S~Q0!/N5
1

2
~11 ln p2 ln 2!2E21

1

2
S E2AE22Ec

2

Ec
D 2

1 ln~2E2AE22Ec
2!,

Ec52A2~p21!

p
. ~64!

As expected, this expression coincides with the logarithm
the number of TAP states computed by Crisanti and So
mers@13#.

Note that this formula is correct only forE,Ec . For E
.Ec the formalism tells us that there are no stable state
follows: in this energy regimeD and l̂ remain of order one
even for infinitet* and the action acquires a negative co
tribution of order t* . This is as it should: since for thes
energy values there are only metastable states with finite
times, the longer we sett* the less metastable states we fin

In general for finite-dimensional glassy systems the in
esting quantity will be the logarithm of the number of me
stable states with finite lifetime, which can be obtained plu
ging the solutionQ(t) into the actionS for a finite value of
t* . In the following we compute this quantity at zero tem
perature.
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C. The zero-temperature case

At zero temperature, Eq.~40! is particularly simple. Intro-
ducing the notationR(t)5Rc(t)1(r 2r c)/t* we find that
the equation on the Fourier transform ofRc reads

2 ivR̂c~v!2lR̂c~v!1
p~p21!

2
R̂c~v!R̂c~v!1150.

~65!

For each frequency there are two solutions:

R̂c
6~v!5

1

p~p21!
@2L6AL222p~p21!#, L5l1 iv.

~66!

In the following we focus on the two solutionsRc
1(t) and

Rc
2(t) which corresponds, respectively, to taking the Four

transform ofR̂c
1(v) andR̂c

2(v). Using that at zero tempera
ture C(t)51 one can decomposeS(Q) in two terms such
that all the dependence ont* is contained only in one of
them:

S/N~Q6!5
1

2
~12 ln p2 ln 2!2E21

1

2
S E7AE22Ec

2

Ec
D 2

1 ln~2E7AE22Ec
2!2

p~p21!

4 E
0

t*
Rc

6~t!

3Rc
6~2t!dt1

1

2 (
v

ln@R̂c
6~v!R̂c

6~2v!#.

~67!

The computation of the second line is performed in the A
pendix B. It turns out that, as in the static case@12#, the
dominant contribution is given byRc

2 for ERSB,E,Ec , by
Rc

1 for 2Ec,E,2ERSB, and for 2Ec,E,2Ec the two
saddle point contributions are the same~see Appendix B!.
Note that at zero temperature,E is the energy density of the
system. The final result is

S~Q!5ReF1

2
~12 ln p2 ln 2!2E21

1

2
S E7AE22Ec

2

Ec
D 2

1 ln~2E7AE22Ec
2!G2E dvrp~v1pE!

3 ln@12exp~2t* uvu!#1t* E
2`

0

dvrp~v1pE!v,

~68!

where rp(x)5A2p(p21)2x2/@pp(p21)# is the Wigner
semicircle law. In Fig. 4 we plot Eq.~68! for p53 and
different values oft* as a function of the energy densityE.
For very large values oft* ,S(Q) converges to the logarithm
of the number of stable states. Note that for a fini
dimensional system we expect a similar behavior but wit
vanishing curve for infinitet* . Finally, we remark that the
formula ~68! has a simple interpretation. In fact, the first lin
1-10
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coicides with the number of saddles with energy densityE.
Moreover, since the spectrum of the Fokker-Planck oper
for an harmonic oscillator with frequencyv is @33# En5(n
11/2)uvu2v/2, the second line of Eq.~68! corresponds to
the contribution due to a collection of harmonic oscillato
with frequency distributed by the semicircle law centered
2pE. This distribution is exactly the same of the eigenv
ues of the energy Hessian evaluated in saddles with en
densityE @12#. As a consequence, at zero temperature,
spectrum of the Fokker-Planck operator for thep-spin
spherical model coincides with the one obtained making
harmonic expansion around each saddle~also the instable
ones!.

VI. THE TWO-GROUPS ANSATZ AND SUPERSYMMETRY
BREAKING

Twenty years ago, when people started to search for
lica symmetry breaking solutions of the Sherrigto
Kirkpatrick model, Bray and Moore@35# proposed a two-
group Ansatz for the famousQa,b matrix @3#. At first sight
the results seemed a little bit strange since the limn→0 Zn

Þ1! ~the overbar means the average over disorder!. It turned
out @36# that in the limit ofn going to zero, the logarithm o
Zn equals the the logarithm of the number of TAP states,
the long-time limit of the configurational entropy~25!. The
reason of this ‘‘coincidence’’ has been completely obsc
until now. For instance, for many mean-field spin glass m
els the complexity was computed starting from TAP sta
and, after, it was checked that the two-group Ansatz g
back the correct result@36,37,28#.

Using the properties of the dynamical solutions presen
in previous sections we can unveil why the Bray and Mo
Ansatz allows one to calculate the long-time limit of th
configurational entropy~25!. In fact this Ansatz is isomor-
phic to zero frequency part of the dynamical calculation

FIG. 4. Time dependent configurational entropys(e,t* ) at T
→0 for p53 as a function of the energy densitye and of the time
t* . From top to bottom:t* 55,10,100,1000,2000,1`. Note the
infinite time limit curve with positive configurational entropy,
mean-field artifact.
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t* →`. This can be shown by the supersymmetric formali
for Langevin dynamics@33,38#. Within this framework all
the two points correlation functions between fieldsSi(t) and
Ŝi(t) can be encoded in

Q~1,2!5(
i 51

N

^Si~1!Si~2!&, 15~Tt1 ,ū1 ,u1!, ~69!

Si~1!5Si~ t1!1 ū1u1Ŝi~ t !1 c̄i~ t1!u11 ū1ci~ t1!, ~70!

whereū1 ,u1 are Grassmann variables andc̄i(t),ci(t) are fer-
mion fields@33,38#. Using this formalism the dynamical so
lution ~58! giving back the configurational entropy reads
large times

Q~1,2!5Qc~1,2!1q1~ ū1u11 ū2u2!

3
r 2r c

t*
1 ū1u1ū2u2

d

~ t* !2 , ~71!

Qc~1,2!5S 11
1

2
~ ū12 ū2!@u11u22~u12u2!

3sgn~ t12t2!#
1

T

]

]t1
D @Cc~ t12t2!2q#. ~72!

The functionQc(1,2) is supersymmetric, whereas the la
two terms in the right-hand side of Eq.~71! break supersym-
metry.

On the other hand, the two-group ansatz consists i
symmetricQa,b matrix

Qa,b511
B

m
, a5b<m, Qa,b512

B

m
, m,a5b<n,

~73!

Qa,b5A1
B

m
, aÞb, a,b<m, ~74!

Qa,b5A2
B

m
, aÞb, m,a, b<n, ~75!

Qa,b5A2
C

m2 , a<m, m,b<n, ~76!

where one has to take them→` andn→0 limits. The func-
tional dependence of the dynamical and replica free ene
of, respectively,Q(1,2) andQa,b is the same@38#. Indeed,
the kinetic term in the dynamical free energy, which does
have a correspondent in the static case, is zero for the
namical solution~71!. Moreover, if one putsB5(r 2r c)T,
2C5T2d, A5q the two matricesQ(1,2) andQa,b lead to
the same results under tracing, convolution and term by t
product. For instance, one can easily obtain

(
a

f ~Qa,a!5E d1 f @Q~1,1!#52B, ~77!
1-11
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(
a,b

f ~Qa,b!5E d1d2 f @Q~1,2!#

52@ f 8~1!2 f 8~A!#B1 f 9~A!B212 f 8~A!C,

~78!

Tra,b ln Q5Tr1,2ln Q

522 ln~12A!1 ln@~12A1B!222AC#.

~79!

As a consequence the computation, which make use of
two-group Ansatz, is isomorphic to the dynamical one fot
→t* . Therefore the replica symmetry breaking scheme
coded in this Ansatz can be finally understood: it is a way
implement the dynamical computation in a replica form
ism. There are, however, two important differences betw
the two approaches. First of all, in the dynamical compu
tion we are not free to choose between different Ansa¨tze the
one which gives back the long-time limit of the configur
tional entropy~25!, but we have simply to solve the equ
tions of motion. This clearly makes the procedure inambi
ous, unlike the case of the replica computation. Moreover
two approaches lead to the same results only if a dynam
solution with the correct values ofq,d,r exists. It could then
happen~see the discussion on the configurational entropy
the SK model! that the equations onq,d,r admit a solution
but there is no dynamical solution corresponding to th
values. As a consequence even if the static computation,
the sum over all TAP solutions or the computation by t
two-group scheme, predicts the existence of an expone
number of stable states the more correct dynamical calc
tion does not.

VII. CONCLUSIONS

In this work we have shown how to put the questio
related to metastable states in glasses in a manner valid
finite-dimensional systems. We have used the constructio
Gaveau and Schulman to define the metastable states.
construction requires the existence of a ‘‘gap’’ in the lif
time, so that one can associate ‘‘states’’ with distributio
that are stable for much longer than a given timet* , and
‘‘transient processes’’ with those that decay much fas
There is no such gap in real glasses, so our use of this
struction has to be considered partly as a definition insp
in the cases where there is.

A reasonable criterion for the relevance of any quan
will hence be that they are not too sensitive to the ex
value chosen fort* . For example, if we consider a temper
ture associated with thea relaxation asTt* with t* *ta , this
definition is meaningful to the extent that it is stable w
respect to a change int* of, say, an order of magnitude.

Next, there is the question as to whetherTt* indeed re-
produces the fluctuation-dissipation temperature. This
other results depend on the validity of the flatness hypothe
in the manner of Edwards~for which positive evidence be
gins to appear@39#!. In this paper we have formulated th
hypothesis in a manner applicable to positive temperatu
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and finite dimensions~as well as to vibrated systems!— but
we have not attempted to prove it. It may be, however, t
writing it in the form ~27!, can be a good starting point fo
doing this. Moreover, the form~27! @and Eq. ~28!# lends
itself naturally to a generalization to cases in which a syst
has more than two widely separated time scales and temp
tures.

Finally, the computation in Sec. V has allowed us
check the mean-field results without relying on the TA
states, themselves an intrinsically mean-field concept.
kind of solutions that dominate break causality and ha
positive action, but satisfy time reversal and a noncau
form of FDT. Unlike the barrier-crossing solution of Lopat
and Ioffe @40#, they have in this sense only some of th
properties of true instantons. Moreover, the dynamical co
putation unveils the meaning of the two-groups Ansatz@36#,
which allows one to compute the number of stable sta
within a replica formalism.
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APPENDIX A: PURE BARRIERS

Let us show how to define ‘‘pure barriers’’ using a supe
symmetric extention of the Fokker-Planck operator. Fo
system withN degrees of freedom, introduce theN fermion
creation and annihilation operatorsai andai

† , with anticom-
mutation relations@ai ,aj

†#15d i j . Define the supersymmet
ric charge as

Q̄5~Tpi2 iE ,i !ai
† , Q5piai . ~A1!

The supersymmetric operatorHSUSY

HSUSY5@Q̄,Q#15H1
]2E

]xi]xj
aj

†ai ~A2!

commutes with the charges, and with the fermion num
operator. In the zero-fermion subspace it coincides with
Fokker-Planck operator.

Applying the operatorQ̄ to all but the lowest Fokker-
Planck ~zero-fermion! eigenvectors, one obtains a on
fermion eigenvector. Going back to the example of lo
temperature dynamics in a potential of Sec. III, one can
that the lowest one-fermion eigenvectors correspond to
tributions associated to the barriers. Indeed, one can c
vince oneself that in a low-temperature multidimension
system, the lowest eigenvectors withk fermions correspond
to barriers withk unstable directions~see Ref.@41#, where
these questions are discussed in detail, and used to d
Morse theory results!.

Now, by analogy with the argument motivating the co
struction of pure states, it is reasonable to define ‘‘barr
distributions’’ in general as the lowest eigenvectors ofHSUSY
with lowest eigenvalues in subspaces withk fermions. This
definition will make sense whenever there is a gap in
1-12
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spectrum, whatever the origin of such a gap~largeN, low T,
etc!. One can then use traces ofe2t* HSUSY to calculate ex-
pectation values.

APPENDIX B:

The aim of this section is to calculate the last line of E
~67!. Instead of making the computation by brute force,
will use the exact results that can be obtained in thep52
case. Forp52 the spherical model is a simple collection
harmonic oscillators with frequency distributed with a sem
circle law centered around the value of the spherical mu
plier. The spectrum of the Fokker-Planck operator for
harmonic oscillator with frequencyv is @33# En5(n
11/2)uvu2v/2. Therefore forp52 and at zero temperature
the logarithm of the trace of the evolution operator reads

ln~Tr e2t* H!52NE dvr~v12E!ln@12exp~2t* uvu!#

1NE
2`

0

dvr~v12E!t* v, ~B1!

wherer(x) is the Wigner semicircle law. One can obtain th
result also by the functional formalism. In the computati
of Sec. V C we obtained an action which forp52 reads

S/N5
1

2
2E21

1

2
~E7AE221!21 ln~2E7AE221!

2
1

2 (
n

R6~n!R6~n!1
1

2 (
n

ln@R6~n!R6~2n!#,

~B2!

where we have writtenR(t) insteadRc(t) since r 5r c for
p52. This is directly related to the fact that there is
configurational entropy forp52 and therefore the two-time
functions relax asymptotically faster than 1/t* . For E,21
thep52 model is a collection of stable harmonic oscillato
One can easily computeRc(t) starting from the result for a
single oscillator and integrating over the Wigner distributio
As expected, this function coincides withRc

2(t). As a con-

sequence forE,21 we expect thatln Tr e2t* H5NS(Q2).
,

Da
.
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On the other hand forE.1 thep52 model is a collection of
unstable harmonic oscillators which can be mapped to
previous case changing the sign of eachv. As a consequence

for E.1 we expect thatln Tr e2t* H5NS(Q1). In the inter-
mediate energy regimea priori one has to consider bot
solutions. Since the functional computation should give ba
the result~B1!, the last line of Eq.~B2! reads

2
1

2 (
n

R6~n!R6~n!1
1

2 (
n

ln@R6~n!R6~2n!#

52E dvr~v12E!S 2t*
v

2
1 lnuevt* /22e2vt* /2u D

6 ipE
2`

0

dvr~v12E! ~B3!

if the determination of the logarithm in the first line of Eq
~B2! is such that ln2152ip. Note that forE,21 all the
oscillators are stable, as a consequence the last term in
~B3! vanishes and Eq.~B2! coincides with Eq.~B1!. For
E.1 all the oscillators are unstable, as a consequence the
term in Eq. ~B3! equalsip and cancels the2 ip coming
from the first logarithm in Eq.~B2!, and one obtains the
same results that forE,21 with an additional term
*dvr(v12E)t* v. Finally, in the intermediate energy re
gime the first line in Eq.~B2! is complex and its imaginary
part cancels exactly the imaginary contribution coming fro
the last term in Eq.~B3!. In this case the the two saddle poi
contributions are the same, therefore to obtain Eq.~B1! one
can consider only one of them. However, to obtain the
pected value ofR(t) one has to sum on saddle points.

For p greater than 2, the equation onRc has the same
form of Eq. ~40! but for a p52 spherical model at zero
temperature with a variance of the couplingsJ25p(p
21)/2. As a consequence the last line of Eq.~67! reads

2E dvr~v1pE!S 2t*
v

2
1 lnuevt* /22e2vt* /2u D

6 ipE
2`

0

dvr~v1pE!. ~B4!
A

@1# B. Gaveau and L. S. Schulman, J. Math. Phys.39, 1517
~1998!. See also B. Gaveau and L. S. Schulman,ibid. 37, 3897
~1996!; Phys. Lett. A229, 347 ~1996!; B. Gaveau, A. Lesne
and L. S. Schulman,ibid. 258, 222 ~1999!.

@2# S. F. Edwards, inGranular Matter: An Interdisciplinary Ap-
proach, edited by A. Mehta~Springer, Berlin, 1994!, and ref-
erences therein; see also A. Mehta, R. J. Needs, and S.
agupta, J. Stat. Phys.68, 1131 ~1992!; R. Monasson and O
Pouliquen, Physica A236, 395 ~1997!.
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