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Quantum Thouless-Anderson-Palmer equations for glassy systems
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We derive Thouless-Anderson-Palmer~TAP! equations for quantum disordered systems. We apply them to
the study of the paramagnetic and glassy phases of a quantum extension of the sphericalp spin-glass model.
We generalize several useful quantities~complexity, threshold level, etc.! and various ideas~configurational
entropy crisis, etc.! that have been developed within the classical TAP approach to quantum systems. The
analysis of the quantum TAP equations allows us to show that the phase diagram~temperature versus quantum
parameter! of the p spin-glass model should be generic. In particular, we argue that a crossover from a
second-order thermodynamic transition close to the classical critical point to a first-order thermodynamic
transition close to the quantum critical point is to be expected in a large class of systems.
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I. INTRODUCTION

Glassy systems of extremely diverse types exist in nat
They all share several common features like a very sl
nonequilibrium dynamics. The development of a full theor
ical description of the glassy phase is one of the most imp
tant challenges in condensed matter physics. A variety
techniques that range from scaling arguments to mean-
approaches has been and is still used, with the aim of
tempting a satisfactory description of the glassy propertie

One of these techniques is due to Thouless, Ander
and Palmer~TAP!,1 who introduced an approach to classic
disordered systems based on the study of a free energy
scape. The key object is the Legendre transform of the f
energyF(b)52 ln Z/b with respect to a number of orde
parameters that are sufficient to describe the transition
the different phases in the system. This function behave
an effective potential whose minima represent different p
sible phases. In a classical fully connected Ising model o
one order parameter is needed, the global magnetizatiom
5( i^si&/N. The two possible minima ofF(b,m) correspond
to the two possible states of positive and negative magn
zation, m56m0(T). Focusing on the Sherrington
Kirkpatrick ~SK! mean-field model for spin-glasses, TA
showed that all the local magnetizationsmi5^si&, i
51, . . . ,N, have to be included in order to derive the re
evant free energy landscape. The extremization conditio
the TAP free energy on themi ’s leads to the TAP equations
It was soon after realized by Bray and Moore2,3 that the
number of solutions to the TAP equations for the SK mo
is exponential in the number of spins in the system for te
peratures below the spin-glass transition.4 A very useful al-
ternative derivation of the TAP equations was given
Plefka,5 who showed that these equations can also be
tained from a power expansion of the Gibbs potential up
second order in the exchange couplings. The advantag
this derivation is twofold: it allows one to show convergen
of the power expansion for all temperatures and it is ea
applicable to other mean-field glassy models. Moreov
Georges and Yedidia6 showed that the high-temperature s
0163-1829/2001/64~1!/014206~15!/$20.00 64 0142
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ries, at fixed order parameter, of the free energy can be u
to derive TAP-like equations and its corrections for mod
in finite dimensions or, equivalently, with finite range inte
actions. The connection between the TAP approach and
more standard analysis of the partition function of a dis
dered model has been exhibited by De Dominicis a
Young,7 who showed that, for the SK model, one recove
the equilibrium results of the replica or the cavity method8,9

via weighted Boltzmann averages over solutions of the T
equations. More recently, the TAP approach has been
plied to other classical disordered models. In particular, t
models that we shall discuss in the following, the spheri
and Ising p spin-glass models10–15 and the Ghatak-
Sherrington~GS! model,16,17 have been analyzed with thi
method.18–20

Glassy systems, and in particular disordered ones,
characterized by having a very slow dynamics with noneq
librium effects at low temperatures.21,22 Mean-field models,
like the sphericalp spin-glass model23 or the SK spin-glass,24

capture this phenomenology. The dynamic solution for
evolution starting from random initial conditions that repr
sent a quench from high temperatures analytically is in
mately connected to the structure and organization of T
solutions. One of the most striking results of the dynam
analysis ofp spin-glass-like models is that the energy dens
~and other one-time quantities! converges asymptotically to
the energy density of high-lying solutions of the TAP equ
tions. This level has been calledthreshold. The energy den-
sity in equilibrium is different. This and other related resu
suggest that an interpretation of the dynamics in terms o
motion in a TAP free-energy landscape can be given.23 The
generalization of the TAP approach to dynamics that
been developed in Ref. 25 allows one to make this statem
precise: the evolution is determined by a gradient descen
the TAP free-energy landscape with the most important
dition of non-Markovian terms.

Usually, glasses can be analyzed with a fully classi
approach since their transition temperatures are rather h
Nevertheless, in many cases of great interest the critical t
perature can be lowered by tuning another external par
©2001 The American Physical Society06-1



h
n
a
n
e
dr

ns
ag

n

t
he
-

a
n
e

wi
ie

n
ed
f
he
ls
d

n

h

th
se
tio

e
as

th
ns
en

i

-
,
dy

th
o

rd

y
et

rue

re-
i-

nd
ly

dif-

he

ons
ical
g in
ial.
la-

otor
n

ard
tic
nd
ct
is-
tion
riti-
he
at
AP

rse

of
then
t a
SK
the

ful
de-

mo-

to
h to
er a
we
ee
t ex-

an-
any
ain
he
of

GIULIO BIROLI AND LETICIA F. CUGLIANDOLO PHYSICAL REVIEW B 64 014206
eter, and quantum fluctuations become very important. T
is the case for the insulating magnetic compou
LiHoxY12xF4, which is an experimental realization of
quantum spin-glass, and currently receives much attentio26

Other examples where glassy properties in the presenc
quantum fluctuations have been observed are mixed hy
gen bonded ferroelectric-antiferroelectric crystals,27 interact-
ing electron systems,28 cuprates such as La22xSrxCuO4,29

and amorphous insulators.30

The quantum fluctuations in LiHoxY12xF4 can be con-
trolled by tuning the strength of an external field that is tra
verse to the preferred direction of the randomly located m
netic impurities. After a series of experiments presented
Ref. 26 the authors’ conclusions are the following.~1! The
samples undergo a paramagnetic to spin-glass transitio
the (T,G) plane, whereG}Ht

2 andHt is the strength of the
transverse field.~2! The transition is of second order~in the
thermodynamic sense! close to the classical critical poin
(T5Tc ,G50) but crosses over to first order close to t
quantum critical point (T50,G5Gc). ~3! The system under
goes out-of-equilibrium dynamics in the glassy phase
demonstrated by the fact that the dynamics strongly depe
on the preparation of the sample for all subsequent tim
explored experimentally.

The theoretical study of quantum spin-glasses started
the analysis by Bray and Moore of the equilibrium propert
of the fully connected Heisenberg model.31 In this article,
Bray and Moore introduced a path-integral representatio
imaginary time of the partition function that they analyz
with the replica trick. Many articles on the equilibrium o
this and related mean-field models have been publis
since.32–42 The static properties of low-dimensional mode
have been studied, and it has been shown that, in finite
mensions, Griffiths-McCoy singularities are very importa
close to the quantum critical point.43 In all these models, the
transition from the paramagnetic to the spin-glass phase
been reported to be of second order throughout.

In most classical disordered models studied so far
transition from the disordered to the ordered phase is of
ond order in the thermodynamic sense. In the exact solu
of the SK model, the spin-glass order parameterq(x) is con-
tinuous at the transition that is of second order in the th
modynamic sense.8 In other classical glassy models such
the Potts glass10 or the spherical44 and Ising45,46 p spin-
glasses, the order parameter jumps at the transition
however, is still of second order in the thermodynamic se
since there is neither a jump in the susceptibility nor a lat
heat. A classical model that exhibits a first-order transition
the anisotropicp spin-glass,p>3, in which the spins take
integer values between2S andS and there is an extra term
in the Hamiltonian2D( isi

2 , proportional to a coupling con
stantD that controls the crystalline tendency. In this case
crossover from a second-order to a first-order thermo
namic transition in the plane (T/J,D/J) has been exhibited
in the exact solution.47 The classical GS model16 is another
candidate to exhibit a second- to first-order crossover in
thermodynamic transition. It is the anisotropic extension
the SK model, or thep52 limit of the previous model. In
this case, a crossover from a second-order to a first-o
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transition in the plane (T/J,D/J) has been exhibited in an
approximate solution ~one-step replica symmetr
breaking!.16,17 The exact solution has not been derived y
and it is then not well established if the model has a t
first-order thermodynamic transition.

In quantum problems, first-order transitions have been
ported in three models. The first one is the so-called ‘‘ferm
onic Ising spin-glass’’ analyzed by Oppermann a
Rosenow.49 This model, however, is thermodynamical
equivalent to the classical GS model discussed above.50 The
other two models are very similar indeed and they are
ferent ways of extending the classical sphericalp spin-glass
model44 to include quantum fluctuations. In one case, t
continuous spins are generalized toM-component vectors
and a global spherical constraint and commutation relati
are imposed.38 The other case uses the fact that the spher
p spin-glass model can be interpreted as a particle movin
an infinite-dimensional hypersphere with a random potent
Quantization is then done by imposing commutation re
tions between coordinates and momenta.39,40,48The latter can
also be interpreted as an extension of the quantum r
model34 that includesp interactions. The relation betwee
the critical properties of the quantum versions ofp spin-glass
models and the experiments in Ref. 26 has been put forw
in Ref. 40. In addition, the connection between the sta
calculation supplemented by the marginality condition a
the analysis of the out-of-equilibrium dynamics in conta
with an environment developed in Ref. 39 was also d
cussed in Ref. 40. However, the reason why the transi
changes from second to first order close to the quantum c
cal point was not clear from this analysis. It is one of t
aims of this article to clarify this point and to study to wh
extent one can claim it to be general, with the use of the T
approach.

Quantum TAP equations for the SK model in a transve
field have been presented by Ishii and Yamamoto33 and De
Cesareet al.36 The former use a perturbative expansion
the free energy in the strength of the transverse field and
follow closely the techniques of TAP; the latter implemen
cavity method. These derivations are specific to the
model and they cannot be simply extended to go beyond
vicinity of the continuous transition and to derive a use
expression for the TAP free energy. The TAP equations
rived by Rehker and Oppermann19 for the fermionic spin-
glass model coincide with those presented by Yokota18 for
the classical GS model since these two models are ther
dynamically equivalent.50

Hence, our aim is twofold. On the one hand we want
present a useful quantum extension of the TAP approac
the statistical properties of disordered systems. Thus, aft
short summary of the classical TAP approach in Sec. II,
discuss in Sec. III the derivation of the quantum TAP fr
energy and TAP equations using a general approach tha
tends those developed by Plefka5 and Georges and Yedidia.6

The advantage with respect to previous derivations of qu
tum TAP equations is that this method can be applied to
quantum disordered model and that it allows one to obt
the TAP equations as well as the TAP free energy. T
knowledge and the analysis of the TAP free energy is one
6-2
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the major keys to understand the physics of mean-fi
glassy systems in the classical as well as in the quan
case. In Sec. IV we present, as an example, the TAP
energy and TAP equations for the quantum extension of
p-spin spherical spin-glass model studied in Refs. 39 and
We show that the TAP equations can be easily related to
equations for the order parameter in the Matsubara rep
approach and also to some of the equations appearing in
real-time dynamic approach. The TAP analysis of this mo
furnishes a benchmark to study the generalization to
quantum case of the methods and interpretations develo
for classical systems. Section V is devoted to the second
of this article. Via the TAP approach we show that the sa
type of phase diagram naturally emerges for systems ha
a discontinuous phase transition in their classical limit~these
are models solved by a one-step replica symmetry-brea
ansatz within the replica analysis!. In particular we relate the
first-order transition close to the quantum critical point to t
structure of metastable states. Finally, we present our c
clusions in Sec. VI.

II. THE CLASSICAL TAP EQUATIONS: A SHORT
SUMMARY

In this section we present a short summary of the class
TAP approach to mean-field disordered spin models. T
classical TAP free-energy1 is the Legendre transform of th
free energy with respect to local magnetic fields,

2bF~b,mi !5Tr expS 2bH2(
i

hi~si2mi ! D , ~1!

where hi are Lagrange parameters enforcing the condit
^si&5mi . The function2bF(b,mi) is an effective potentia
that depends on the local magnetizations. The Lagrange
ditions 2]bF/]mi5hi , called the TAP equations, fix th
local magnetizations as functions of the local magne
fields.41 The solutions$mi

a% of the TAP equations are sta
tionary points ofF(b,mi). If they are also stable~all the
corresponding eigenvalues of the free-energy Hessian
positive!, they are identified8 with pure states, also calle
TAP states. This interpretation was put forward by De D
minicis and Young,7 who showed that the partition functio
in the classical SK model can be written as a weighted s
over the stable solutions of the TAP equations:

Z5(
a

exp@2bF~b,ma!#, ~2!

where the indexa labels different TAP states,ma is an
N-vector encoding the local magnetization in the solutiona,
F is the extensive TAP free energy of such a solution, a
the sum runs over all TAP solutions. Consequently, the st
average of any observable can be computed from Eq.~2!. At
low temperatures the TAP free energy has a large numbe
minima. If one groups different TAP states with the sam
free energy in setsC, then the partition function can be writ
ten as
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Z5(C
N~ f ,b!exp~2bN f !, ~3!

where the factorN(b, f ) is the number of solutions with
TAP free-energy density

F(b,ma)/N5 f . One can now replace the sum by an i
tegral and set the factorN(b, f ) in exponential form; this
yields

lim
N→`

1

N
ln Z5 lim

N→`

1

N
lnS E d f exp2N@b f 2s~b, f !# D ,

~4!

where we have taken the continuous limit and introduced
complexity

s~b, f ![ lim
N→`

1

N
ln@N~b, f !#. ~5!

The configurations that dominate the sum are those havin
free-energy density such that it minimizesb f 2s(b, f ). The
identity between the partition function and the weighted s
over TAP solutions has been demonstrated for many o
models10,13,51 and it is generally believed to hold for an
mean-field disordered system.

In the following we focus on ‘‘discontinuous glass
systems’’21 that are characterized by having a discontinuo
transition ~the Edwards-Anderson order parameterqEA
jumps! that is still of second order thermodynamicall
Within the replica analysis of the partition function the
models are characterized by a one-step replica symme
breaking solution below a static transition temperatureTs
and a replica-symmetric~RS! solution that corresponds t
the paramagnetic phase atT.Ts . However, for intermediate
temperaturesTs,T,Td there are a number of nontrivia
TAP solutions exponential inN that combine themselves i
such a way that the sum~4! is identical to the RS result.

The relationship between metastable states and rep
has been put forward in Refs. 46,51 and 53. Indeed, cons
x different identical systems~‘‘clones’’ ! coupled by an at-
tractive, infinitesimal~but extensive! interaction. When there
exist many pure states all the clones fall into the same s
and the free energy for the system ofx clones reads

lim
N→`

21

bN
ln Zx5 lim

N→`

21

bN
ln E d f exp$2N@bx f

2s~b, f !#%. ~6!

On the other hand, the computation of the left-hand side
Eq. ~6! can be performed within the replica formalism:

lim
N→`

21

bN
ln Zx5 lim

N→`

21

bN
ln Zx5 lim

N→`,n→0

21

bNn
lnZx

n,

~7!

where the overbar represents the average over diso
Since the attractive coupling between thex clones is infini-
tesimal, the computation of the right-hand side of Eq.~7!

reduces simply to the calculation of limn8→0(x/n8)lnZn8,
6-3
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where the replica-symmetry between then groups of
x-replicas (n85nx) is explicitly broken. When the system i
in the replica symmetric phase (Ts,T), this reduces to study
of the one-step solutions nonoptimized with respect tox:

2 lim
N→`

1

bN
lnS E d f exp$2N@bx f2s~b, f !#% D

5xExtrqEA
f rep~qEA ;b,x!, ~8!

wheref rep is the free energy computed by using replicas,qEA
is the Edwards-Anderson parameter, andx is the break point
~or the size of the blocks in the replica matrix!. For simplic-
ity we consider that the interstate overlapq0 equals zero. The
definitions of these parameters are standard in the rep
approach,8 and they will appear in the analysis of the qua
tum p spin-glass model in Sec. III. Since the integral on t
left-hand side of Eq.~8! is dominated by a saddle point con
tribution, one finds that, for a given temperature, fixing t
value ofx is equivalent to summing over states with a giv
energy densityf. The relationship betweenf andx reads

bx5
]s~b, f !

] f
. ~9!

Note that within this framework one does not have to op
mize with respect tox. Instead,x is a free parameter and, b
changing the value ofx, one can consider different groups
metastable states.

The analysis of the TAP equations reveals three temp
ture regimes for discontinuous glassy systems:

(1) High temperatures Td,T. The system is in the para
magnetic phase; the paramagnetic TAP solutionmi50, for
all i, dominates the sum andf PM52 ln Z/(bN). Td is the
dynamic critical temperature. AboveTd the dynamics start-
ing from a random initial condition converges asymptotica
to the paramagnetic solution.

(2) Intermediate temperatures Ts,T,Td . The replica
analysis of the partition function indicates that the system
still in the paramagnetic phase. However, the study of
TAP equations and the dynamics show that atTd the para-
magnetic solution is fractured in a number of minima exp
nentially large inN of the TAP free-energy.12,10,52,53Indeed
one can recover these results also by the replica metho
careful replica analysis shows that there exist one-step s
tions in these temperature regimes other than the param
netic one. These solutions are in one-to-one correspond
with groups of states with a given free-energy dens
@through the relationship~9!#. For instance, one can follow
the evolution of the threshold states~the states with highes
free energy! by tuning the parameterx. For these states,x
51 when T5Td and x decreases at lower temperature
Moreover, the dominant contribution to Eq.~4! is given by
the states characterized byx51, i.e., those with free-energ
density such that

b5
]s~b, f !

] f
. ~10!
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These are the threshold states atTd and other states whe
T,Td . Hence, in the rangeTs,T,Td saddle-point solu-
tions ~corresponding tox51) that are not absolute minim
of F dominate the integral since their number scales ex
nentially with N. The final result for the free-energy densi
in this temperature range coincides with the one of the p
longation of the paramagnetic solution~which actually does
not exist!. A naive replica computation fails to signal th
difference between a true paramagnetic solution and the
semble of nontrivial TAP solutions withmiÞ0. The dy-
namic approach detects the change in free-energy lands
at Td since the system cannot reach equilibrium for any te
perature belowTd .23

(3) Low temperatures T,Ts . At the static transition tem-
perature the complexity of the TAP solutions, which dom
nates the sum~4!, vanishes. The static transition appears
an entropy crisissince the part of the total entropy that
related to the large number of states disappears. ForT,Ts
the TAP states that dominate the integral in Eq.~4! corre-
spond to the equilibrium glassy phase. Dynamically,Ts does
not play any role. The out-of-equilibrium dynamics is dom
nated by the threshold states, which are the highest one
free-energy and which are characterized by flat direction
the free-energy landscape.

Note that via the TAP approach one can obtain a reas
able justification of the marginality condition54 often used to
obtain information about the out-of-equilibrium dynami
starting from a pure equilibrium computation.55 Indeed the
value ofx fixed by the marginality condition corresponds
the TAP states that are marginally stable~the threshold
states!: the flatness of the free-energy landscape around th
states is responsible for aging.23

III. THE QUANTUM TAP EQUATIONS

In this section we present a simple procedure to der
TAP equations for generic completely connected quant
systems. We also expose the physical meaning of the q
tum TAP equations by the cavity method.8

We are aware of two publications where TAP equatio
for quantum systems have been already presented.33,36 With
respect to these works our derivation is more systematic
simple, and allows one to obtain the TAP equations as w
as the TAP free-energy for any completely connected qu
tum disordered system.

A. Formalism, notations, and models

The formalism that we use to derive TAP equations
generic quantum problems is very similar to the one
scribed in Refs. 5 and 6 and, it follows even more close
the one used in Ref. 25 to obtain the dynamical TAP eq
tions for classical disordered models. We focus on syste
characterized by the potential energy,

Hp52 (
i 1,•••, i p

(
a

Ji 1 , . . . ,i p
si 1

a
•••si p

a , i 51, . . . ,N,

a51, . . . ,m ~11!
6-4
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wheresi may represent an SU~2! spin (m53), a rotor (m
.1), a spherical spin (m51), or a space coordinate (m
51), andJi 1 , . . . ,i p

, the couplings between the differentsi ,
are independent random variables with zero mean and v
ance:

~Ji 1 , . . . ,i p
!25

J̃2p!

2Np21
. ~12!

As a consequence the following derivation applies to~com-
pletely connected! Heisenberg models, quantum rotor mo
els, and quantum continuous systems.37 Without loss of gen-
erality and to simplify the notation we shall suppress
index a in the rest of this section.

For classical spin-glasses TAP showed that all the lo
magnetizationsmi , i 51, . . . ,N, are needed to derive th
relevant free-energy density to describe the metast
properties.1 If one is interested in the dynamics of classic
disordered mean-field systems, one has to use a Lege
transform not only with respect to all time-dependent lo
magnetizationsmi(t), but also with respect to the autocorr
lation C(t,t8)5(1/N)( i^si(t)si(t8)& and the linear respons
R(t,t8)5(1/N)( id^si(t)&/dhi(t8)uh50.25

In order to describe the metastable properties of a qu
tum disordered model we shall show that it is necessar
use a Legendre transform with respect to the local aver
coordinates,mi(t), and the autocorrelation function i
imaginary time,C(t,t8). The quantum TAP free energ
reads

2bF„b,mi~t!,C~t,t8!,a…ua51

5 ln E Ds~t!expF2
1

\ E
0

b\

dt@Hk1aHp~s!#

1
1

2\2 E0

b\

dtE
0

b\

dt8(
i

L~t,t8!

3@C~t,t8!2si~t!si~t8!#1
1

\ E
0

b\

dt(
i

hi~t!

3@mi~t!2si~t!#GU
a51

, ~13!

where Hk is the kinetic energy,Ds(t) indicates the func-
tional measure on the configuration space, anda is a param-
eter whose role will be clarified in the following. For in
stance, ifsi are SU~2! spins,Hk is the Berry phase and th
functional measure is restricted to periodic functionssi(t)
~with period b) satisfying the constraintsi

2(t)51. The
sourceshi(t) andL(t,t8) have the role of Lagrange multi
pliers fixing the average value of the coordinates and
correlation:

mi~t!5^si~t!&, ~14!

C~t,t8!5
1

N (
i

^si~t!si~t8!&. ~15!
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Once the TAP free energyF is known, one can derive the
TAP equations as Legendre relations,

2
dbF

dmi~t!
5hi~t!, 2

2

N

dbF

dC~t,t8!
5L~t,t8!. ~16!

Until now we have not used the scaling~12!, and all these
definitions can be equally applied to finite-dimensional s
tems. The great simplification due to the mean-field chara
of the interactions in Eq.~12! is unveiled if one performs a
perturbative expansion of Eq.~13! in a and writes
2bF„b,mi(t),C(t,t8),a… as a power series ina:

2bF„b,mi~t!,C~t,t8!,a…

5 (
n50

`
1

n!

]n@2bF„b,mi~t!,C~t,t8!,a…#

]an U
a50

an. ~17!

In fully connected models, if one chooses the correct or
parameters@which aremi(t) and C(t,t8) in the quantum
case#, the perturbative expansion~17! around the pure kinetic
theory is actually a simple sum over three terms. High
order terms in the series vanish in the thermodynamic li
due to the scaling ofJi 1 , . . . ,i p

with respect toN. In more
general cases, in finite dimensions, this will not be the c
and Eq. ~17! becomes a 1/d expansion around mean-fiel
theory, whered is the spatial dimension.6

Let us consider in more detail the terms arising from t
expansion ~17!. The zeroth-order one is simply
2bF„b,mi(t),C(t,t8),0…, i.e., the free energy ofN free
spins constrained to have local magnetizationsmi(t) and a
global correlation functionC(t,t8). This term depends only
on the nature of the degrees of freedom, whether they
SU~2! spins, rotors, or space coordinates. In particular, it c
be analytically computed only ifsi are spherical spins o
space coordinates. In the other cases, one has to reso
approximations or numerical computations.

The first-order term is the naive mean-field free energ

]~2bF !

]a U
a50

5
1

\ E
0

b\

(
i 1,•••, i p

Ji 1 , . . . ,i p
^si 1

•••si p
&a50

5
1

\ E
0

b\

(
i 1,•••, i p

Ji 1 , . . . ,i p
mi 1

•••mi p
.

~18!

Note that the decoupling of the spins fora50 is essential to
obtain the last identity. The second-order term depends
the correlation function and the overlap functionQ(t,t8)
5( imi(t)mi(t8)/N only and equals

NJ̃2

4\2 E
0

b\

dtE
0

b\

dt8$Cp~t,t8!2Qp~t,t8!

2p@C~t,t8!2Q~t,t8!#Qp21~t,t8!%, ~19!

Using the scaling of the couplings withN and the same ar
guments developed for classical systems,5,13 we have verified
that all ordersn>3 in the series~17! are suppressed in th
thermodynamic limit.
6-5
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B. A cavity interpretation

First of all, let us write the TAP equations in a way th
allows one to clarify the physical meaning of the differe
terms:

d~2bF !

dmi~t!
U

a50

5hi
cav~t!

52 (
i 2,•••, i p

Ji ,i 2 , . . . ,i p
mi 2

~t!•••mi p
~t!

2
1

\ E
0

b\

dt8Fp~p21!

2
@Q~t,t8!

2C~t,t8!#Qp22~t,t8!Gmi~t8!, ~20!

2

N

d~2bF !

dC~t,t8!
U

a50

5Gcav~t,t8!5
p

2
@Qp21~t,t8!

2Cp21~t,t8!#. ~21!

The solutions to these equations are expected to be t
translation invariant since we are developing a description
equilibrium and metastable properties. Thereforehi

cav is in-
deed independent of the imaginary time andGcav depends
only on the difference betweent andt8.

An understanding of the meaning of the quantum T
equations follows from the analysis ofF for a50. Indeed,
by tracing out all the spins exceptsi in the partition function
produces a single-site measure~for si) whose action reads

2
1

\ E
0

b\

dt@Hk„si~t!…1hi
cav~t!si~t!#

2
1

2\2 E0

b\

dtE
0

b\

dt8si~t!Gcav~t,t8!si~t8!, ~22!

whereHk„si(t)… is the kinetic energy for the spinsi . As a
consequence the TAP solutions are the self-consistent
tions that relateGcav(t,t8) andhi

cav(t) @which are functions
of C(t,t8) andmi(t)] to C(t,t8) andmi(t) obtained from
the single-site action~22!.

Equations~20! and ~21! show that the action on theith
spin of theN21 remaining ones reduces simply tohi

cav and
Gcav ~see Fig. 1!. This implies that tracing out all the spin
but theith one produces a Gaussian measure for the ins
taneous magnetic fieldshi(t)52( i 2, . . . , i p

Ji 1 , . . . ,i p
si 1

••

•si p
, whose mean and connected two-point correlation fu

tion equal, respectively,hi
cav andGcav(t2t8).

The expression ofhi
cav and Gcav(t2t8) can be justified

within the cavity method.8 Let us focus for simplicity on the
p52 case for which

hi
cav52(

k
Ji ,k^sk&N21 , ~23!
01420
t

e-
f

la-

n-

-

where^•&N21 represents the thermal average with respec
the system with theith site removed.̂sk&N21 is not simply
equal tomk , which is the mean magnetization for the syste
of N spins. A correction term, first discovered by Onsag
appears:

^sk&N215mk2
1

\ E
0

b\

dt
dmk~t!

hk~t8!
Ji ,kmi~t8!

5mk2
1

\ E
0

b\

dt@C~t!2Q#Ji ,kmi . ~24!

Plugging Eq.~24! into Eq. ~23! and using the scaling of the
couplings withN, one recovers the expression forhi

cav given
in Eq. ~20! in the p52 case, whereas forGcav a similar
computation9 gives back the expression given in Eq.~21!.

Finally, we remark that the main difference between t
classical and the quantum TAP approach is that in the la
the cavity interaction consists not only in a cavity field b
also in the ‘‘Weiss function’’Gcav(t2t8), which is a func-
tion of ~imaginary! time. This already happens in the mea
field theory of quantum nondisordered systems56 for which
local quantum fluctuations are taken into account exac
whereas the spatial ones are frozen. For disordered syst
even in the limit of infinite dimensions, one has to take in
account not only the local quantum fluctuations but a
some spatial fluctuations: all the instantaneous magn
fields have the same variance but their averaged values
tuate from site to site.

IV. A CONTINUOUS DISORDERED QUANTUM MODEL

In this section we apply the method of Sec. III to th
study of the quantum sphericalp spin-glass model. We de
rive and analyze the TAP free-energy density and the T
equations for the local magnetization and correlation fu
tion in imaginary time. We relate these equations to
equation for the order parameter in the Matsubara replica
approach to equilibrium and in the Schwinger-Keldysh a
proach to the nonequilibrium dynamics.

FIG. 1. A schematic representation of the action of theN21
spins on the cavity, which, due to the infinite connectivity, simp
reduces tohi

cav andGcav.
6-6
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A. The model and its TAP equations

A model of a quantum particle with positions and mo-
mentump that moves on anN-dimensional random environ
ment is defined as

H@p,s,J#5
p2

2M
2 (

i 1,•••, i p

N

Ji 1 , . . . ,i p
si 1

, . . .si p
. ~25!

A Lagrange multiplierz enforces the averaged spherical co
straint,

1

N (
i 51

N

^si
2&51. ~26!

The random interaction strengthsJi 1 , . . . ,i p
are taken with

zero mean and variance defined in Eq.~12!. This model is a
possible quantum extension of the sphericalp spin-glass
model introduced in Ref. 44 and it is a particular realizati
of the class defined in Eq.~11! corresponding to space coo
dinatessi constrained to move on aN-dimensional sphere.

The zeroth-order term of the expansion~17! can be
readily computed for this model. By settinga51, rescaling
time according tot→t\/ J̃, and defining the ‘‘quantum pa
rameter’’ G[\2/( J̃M ) we obtain the following expressio
for the quantum TAP free energy given in Eq.~13!:

2bF5
N

2
Tr ln~C2Q!1

N

2G
TrS ]2C

]t2 D
1E

0

b

dt (
i 1,•••, i p

Ji 1 , . . . ,i p
mi 1

~t!•••mi p
~t!

1
N

4E0

b

dtE
0

b

dt8$Cp~t,t8!2Qp~t,t8!

2p@C~t,t8!2Q~t,t8!#Qp21~t,t8!%

2
Nb

2 E
0

b

dtz~t!@C~t,t!21#. ~27!

The physical parametersmi(t) andC(t,t8) are fixed by the
quantum TAP equations~16!:

hi~t!5 (
i 2,•••, i p

Ji ,i 2 , . . . ,i p
mi 2

~t!•••mi p
~t!

1E
0

b

dt8F2~C2Q!21~t,t8!1
p~p21!

2

3@Q~t,t8!2C~t,t8!#Qp22~t,t8!Gmi~t8!,

z~t!d~t2t8!5~C2Q!21~t,t8!1d~t2t8!

3
1

G

]2

]t2
1

p

2
@Cp21~t,t8!2Qp21~t,t8!#. ~28!
01420
-

Finally, settinghi(t)50 and using the fact that at station
arity, mi(t)5mi , Q(t,t8)5qEA , z(t)5z, and C(t,t8)
5C(t2t8), the previous equations are simplified to

1

G

]2C~t!

]t2
52

p

2E0

b

dt8@Cp21~t2t8!2qEA
p21#

3@C~t8!2qEA#1z@C~t!2qEA#2d~t!,

~29!

zmi5 (
i 2,•••, i p

Ji ,i 2 , . . . ,i p
mi 2

•••mi p

1mi

p

2E0

b

dt8@Cp21~t8!1~p22!qEA
p21

2~p21!C~t8!qEA
p22#. ~30!

B. Analysis of the quantum TAP equations

In the classical case the TAP equations admit a la
number of solutions at low temperatures. In the following w
shall show that this remains the case when quantum fluc
tions are included in a certain regime ofT and G. Further-
more, we shall classify them by their Edwards-Anderson
rameters. Finally, we shall exhibit several properties of
TAP solutions valid at low temperatures.

1. A simple equation of the Edwards-Anderson parameter

Let us analyze in detail the equations for the local ma
netizationsmi . First, we note that a simple equation th
relatesqEA to the potential energy density derives from E
~28!. In fact, by multiplying Eq.~28! by mi /N and summing
over i 51, . . . ,N one obtains~for hi50)

052
qEA

C̃~0!2bqEA

1
p

N (
i 1,•••, i p

Ji 1 , . . . ,i p
mi 1

•••mi p

2
p~p21!

2
@C̃~0!2bqEA#qEA

p21 , ~31!

where we introduced the discrete Fourier transform of
correlation

C̃~v![E
0

b

dt eivtC~t!. ~32!

Following Kurchanet al.,12 we introduce theangular vari-
abless i5mi /AqEA and define theangular potential energy
density

E~s![2
1

N (
i 1,•••, i p

Ji 1 , . . . ,i p
s i 1

•••s i p
. ~33!

For any fixed energy levelE, Eq. ~31! becomes a second
order polynomial equation forqEA ; the solution is deter-
mined by
6-7
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qEA
p/221@C̃~0!2bqEA#5z65

1

p21
@2E~s!6AE 2~s!2Eth

2 #,

~34!

andEth , called the threshold value, is given by

Eth52A2~p21!

p
. ~35!

The right-hand side of Eq.~34! has to be real. This impose
the conditionE<ETH sinceE is a negative quantity.

For each sign in Eq.~34!, its left-hand side has a be
shape as a function ofqEA . It vanishes atqEA50 andqEA

5C̃(0)/b and attains its maximum at qEA5(1
22/p)C̃(0)/b. Hence, at fixed values ofE and T, Eq. ~34!
has none ortwo solutions,qEA5q8,q9, with

0<q8<
~122/p!C̃~0!

b
, ~36!

~122/p!C̃~0!

b
<q9<

C̃~0!

b
~37!

@we assume, as expected, thatC(t) is positive for allt]. In
the classical case, the minus sign in Eq.~34! leads to a value
of qEA that is a minimum of the TAP free energy for allE
,ETH . The Edwards-Anderson parameter determined in
way has the expected physical behavior.13 In Appendix A we
show that in the quantum case one has to choose the m
sign in Eq.~34! too. Thus,qEA is determined by

qEA
p/221@C̃~0!2bqEA#5

1

p21
@2E~s!2AE 2~s!2ETH

2 #.

~38!

This equation still has two solutions. It can be proven t
the solution with the larger absolute value ofqEA has the
correct physical properties. In particular, it is connected
the classical solution, and it is then the solution to be ke
Thus there is a one-to-one correspondence betweenqEA
andE.

Of particular interest, as we shall show below, is t
threshold solutionE5ETH . In this case the equation forqEA
becomes

15
p~p21!

2
@C̃~0!2bqEA#2qEA

p22. ~39!

Note that this equation coincides with the one found w
the Matsubara formalism using the marginality condition
fix the block sizex in the replica matrix.40 Furthermore, it
coincides with the equation for the dynamic value of t
Edwards-Anderson parameterqEA[ limt→`limtw→`C(t

1tw ,tw) obtained from the study of the real-time dynami
of the quantum model evolving in contact with an Ohm
quantum environment,39 when one takes first the thermod
namic limit, next the long-time limit of the system’s dynam
ics in contact with the environment, and finally, the stren
of the coupling to the environment to zero. The relations
between the TAP, Matsubara, and dynamical approach
be discussed in Sec. IV C.
01420
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2. Multiplicity of TAP solutions

Equations~34! reveal an interesting structure of the TA
equations~29! and ~30!. For a given value of the angula
potential energyE the TAP equations decouple in two diffe
ent sets: Eqs.~29! and ~34!, with the spherical condition on
C, determine the correlation function, the spherical para
eter, and the Edwards-Anderson parameter, whereas
~30! determine the angular variables only. They read

mqEA
12p/2s i52pE~s!s i5p (

i 2,•••, i p

Ji ,i 2 , . . . ,i p
s i 2

•••s i p
,

~40!

m[z2
p~p22!b

2
qEA

p211
p~p21!

2
C̃~0!qp222S̃~0!,

~41!

where we have defined

S̃~0![
p

2 E
0

b

Cp21~t!. ~42!

For a given value of the angular potential energyE, Eqs.~40!
allow one to determine the angular part of the TAP solutio

In general, for a given value ofE, Eqs. ~29! and ~34!
determine the correlation function, the spherical parame
and the Edwards-Anderson parameterin a unique way. ~Ex-
ceptions to this rule are the paramagnetic solutions, wh
however, do not correspond to anyE.! As a consequence, th
multiplicity of TAP solutions is entirely due to Eq.~40!,
which, for certain values ofE, can admit an exponential~in
N) number of solutionsN(E). The complexity as a function
of E is then defined as

s~E![ lim
N→`

1

N
ln@N~E!#, ~43!

Equation ~40! already appears at the classical level. T
complexity has been computed by Crisanti and Somme13

and Cavagnaet al.14 with the following result. There are
typically no solutions forE,EEQ , whereas forEEQ,E
,ETH the complexity reads

s~E!5
1

2 F11 lnS p

2D G2E 21S E2AE 22ETH
2

A2ETH
D 2

1 ln~2E2AE 22ETH
2 ! for EEQ,E,ETH ,

~44!

whereEEQ is the value at whichs(E) vanishes. A plot of this
function is traced in Fig. 2 forp53.

3. A low-temperature and low-G approximation

In the classical case the TAP equations separate in
sets:N equations for the angular variables and one for
Edwards-Anderson parameter. The former admit an ex
nential number of solutions and are studied from a statist
point of view ~one computes the number of solutions and
typical properties of the solutions corresponding to a giv
6-8
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E), whereas the latter can be easily solved. In the quan
case the analysis of the equations for the angular variabl
identical to the one used for classical systems. The analo
the equation that determinesqEA becomes now a differentia
equation forC(t) that has to be studied numerically. Th
differential equation can be mapped exactly onto the o
analyzed with the replica method, as we shall show in S
~IV C!, and its numerical solution can be found in Ref. 40.
this section we perform a low-temperature and low-G ap-
proximation, also discussed in Ref. 40, that allows one
obtain some qualitative results that remain valid for the ex
solution.

At low temperature and lowG, the extension of the imagi
nary time interval diverges@0,b→`# and the periodic cor-
relationC(t) is expected to have a rapid decay over a sh
time interval, from 1 to its ‘‘asymptotic’’ value, say, att
5b/2. Moreover, the ‘‘regular’’ part of the correlation, tha
we define as40

qREG~t![C~t!2qEA ~45!

can be assumed to be small. Therefore we can expand
TAP free energy in powers ofqREG(t). Up to terms of the
order ofqREG(t)3 we obtain

2
bF

N
5

1

2
Tr ln@qREG~t!#1

1

2G
TrS ]2qREG~t!

]t2 D
1

b

N (
i 1,•••, i p

Ji 1 , . . . ,i p
mi 1

•••mi p

1b
p~p21!

4
qEA

p22E
0

b

dtqREG
2 ~t!

2
b

2
z~qREG~0!1qEA21!, ~46!

where we have focused on the space of time translation
variant~TTI! functions~since the TAP solutions are TTI thi

FIG. 2. The complexitys(E) as a function ofE in the interval
EEQ,E,ETH for p53.
01420
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does not imply a loss of generality!.
Within this approximation the TAP equations becom

quadratic in Fourier space,

12S wk
2

G
1zD q̃REG~vk!1

p~p21!

2
qEA

p22q̃REG
2 ~vk!50,

~47!

and yield

q̃REG~vk!5
z1vk

2/G6A~z1vk
2/G!222p~p21!qEA

p22

p~p21!qEA
p22

.

~48!

By taking vk50 and comparing to Eq.~38! one obtains

E52
zqEA

12p/2

p
. ~49!

The spherical constraint reads

12qEA5
1

b (
k

q̃REG~vk!5E
0

`dv

p
x9~v!cothS bv

2 D ,

~50!

where

x9~v![Imq̃REG~vk

52 iv!5
qEA

12p/2

p21
AE TH

2 2S E1
v2qEA

12p/2

pG D 2

.

~51!

The integral in Eq.~50! has to be taken on the interva
vP@v2 ,v1# such that the square root is real.

In the low-temperature limit, we approximat
coth(bv/2);1 and, by changing variables in the integral, w
obtain

GI 2~E,p!5
p2~p21!2

p
~12qEA!2qEA

(p22)/2, ~52!

with

I ~E,p!52E
A2E1ETH/2

A2E2ETH
dxAE TH

2 2~E1x2!2. ~53!

Equation~51! yields a relation amongG, qEA , andE of the
form

GI 2~E,p!5const3~12qEA!2qEA
(p22)/2, ~54!

with const a numerical constant. For eachE, there is a solu-
tion with a physically meaningful value ofqEA that is close
to 1 until reaching a criticalGMAX(E). This value tells us
when the TAP solutions associated withE disappear. It can
be easily proven thatI (E,p) is a growing function ofE;
hence,GMAX(E) is a decreasing function ofE. This implies
that the TAP solutions that are at the threshold level dis
pear more quickly than those that are at lower values oE.
This is again similar to the dependence of the classical T
solutions with temperature:12 the solutions corresponding t
6-9
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the threshold level disappear at a lower temperature than
ones corresponding to the equilibrium levelTMAX(ETH)
,TMAX(EEQ) and, more generally,TMAX(E1),TMAX(E2) if
E1.E2.

The low-frequency behavior of the spectral dens
x9(v)[Imq̃REG(vk52 iv) of the threshold states is gap
less,

x9~v!;v for v→01, ~55!

whereas all the other states (E,ETH) have a gapD in their
excitation spectrum,

x9~v!;Av2D for v→D1. ~56!

Furthermore we have studied the dependence of the
energy onE andG in the low-temperature limit. Plugging th
solution~48! into Eq. ~46! we find, after a tedious computa
tion,

2
bF

N
52E dv

pG
lnF2 sinhS bv

2 D Gvx9~v!

1
bqEA

p/2

2 S p222
p

qEA
D E, ~57!

whereqEA satisfies Eq.~38!. This expression allows one t
study the evolution of the free energy of the TAP states a
function of G. We have found that if one knows a TA
solution at zero temperature and zeroG one can follow it
continuously inG. As in the classical case, TAP solutions d
not cross, merge, nor divide in this model.

Figure 3 summarizes these results in a schematic w
Finally, note the special role of the threshold states, wh
are gapless~contrary to the others!, the first ones to disappea
and the ones with highest free-energy density.

FIG. 3. TAP free-energy versusG at zero temperature. Th
curve~1! corresponds to threshold states which are the first one
disappear atGTH ; the curve~3! corresponds to the states with th
lowest free-energy which are the last ones to disappear atGRSBand
the curve~2! corresponds to an intermediate state.
01420
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ee
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4. Stability of TAP states

In the classical case one can check the stability of T
states. In the quantum case this is a difficult task that ha
be performed numerically. In the following we shall lim
ourselves to prove that the TAP solutions characterized
E5ETH ~threshold states! are characterized by zero mode
and are hence marginally stable. We expect that a comp
stability analysis will confirm that the TAP states charact
ized byE,ETH are stable.

Let us focus on the reduced free-energy Hess
]2F/]mi(t)]mj (t8) evaluated in a TAP solution$mi

a%. This
matrix depends ont,t8 only through their difference. There
fore it is diagonal in Fourier space. Focusing on zero f
quency, the original problem reduces to the diagonalizat
of the following matrix:

Ai , j52 (
i 3,•••, i p

Ji , j ,i 3 , . . . ,i p
mi 3

a
•••mi p

a 2pEqEA
p/221d i , j ,

~58!

where qEA5( i(mi
a)2/N. The density of eigenvalues ofA

has been computed in Ref. 54 and, except for
isolated eigenvalue corresponding to the eigenvectormi

a , it
is a semicircular law centered in2pEqEA

p/221 with width
2pETHqEA

p/221 . Consequently, threshold states are charac
ized by a vanishing fraction of zero modes.

5. The classical limit

The classical limit of Eqs.~29! and~30! yields the classi-
cal TAP equations computed by Kurchanet al.12 In fact, in
the classical limit,C(t)51, and the parameterz is fixed by
integrating Eq.~29! between 01 andb1. This yields

z5
1

b~12q!
1

pb

2
~12qp21!. ~59!

By inserting this value ofz in Eq. ~30! we obtain

S 1

b~12q!
1

p~p21!b

2
~12q!qp22Dmi

5p (
i 2,•••, i p

Ji ,i 2 , . . . ,i p
mi 2

. . . mi p
, ~60!

which coincides with the classical TAP equations for t
local magnetizations. The equation that fixesqEA as a func-
tion of E in the classical limit is simply obtained from Eq
~34! by settingC̃(0)51.

C. Relation among TAP, Matsubara, and dynamic approaches

In Sec. II we have recalled the relationship among TA
replica, and dynamical approaches in the classical case
this subsection we show how these connections are gen
ized to quantum systems.

1. TAP and Matsubara approaches

Via the replica analysis in the Matsubara imaginary-tim
framework and within a one-step RSB ansatz, the order

to
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rameter is then3n matrix Qab, which is fully described by
n identical diagonal elementsqd(t) that depend on the
imaginary timet, n(x221) constant elementsqEA that oc-
cupy thex3x blocks around the diagonal, and the remaini
n22n(x221) elementsq0 that in the absence of an extern
field are identically zero. In then→0 limit, the three param-
eters qd(t), qEA and x, together with the value of the
Lagrange multiplier that enforces the averaged spherical c
straint, determine the full solution of the problem.40

The connection between the TAP and Matsubara
proaches is obtained by identifying the Edwards-Ander
parametersqEA in the two approaches,C(t) with the
t-dependent diagonal parameterqd(t) in Qab , and the
Lagrange multipliers. In particular we have shown that
subtracting the equation obtained foraÞb from the equation
corresponding toa5b, one obtains Eq.~29!. In the Matsub-
ara approach one has another equation forqEA in which x
acts as an external parameter. Therefore by fixing the v
of the break point one fixes the value ofqEA . As in the
classical case two different methods to fix the breaking po
parameterx, namely, optimization and the marginality co
dition, lead to the static and dynamic transitions, resp
tively. In the TAP approach the role ofx is played byE,
which enters the equation forqEA as a parameter. We hav
found that the relationship betweenx andE is encoded in

bx5
]s~b, f !

] f
, ~61!

wheres is the complexity defined in Eq.~5!; see Appendix
B. This suggests that in a quantum problem the relations
~8! is generalized to

2 lim
N→`

1

bN (
a

e2bxN fa

52 lim
N→`

1

bN
ln E d f eN(2bx f1s(b, f ))

5xExtrqEA ,qd(t) f REP„qEA ,qd~t!;x,b,G…. ~62!

Using Eq.~61! we have found that the Matsubara equatio
for qEA andqd(t) and the TAP equations forqEA andC(t)
coincide. For instance, the TAP equations for the high
TAP states~threshold states! and the lowest TAP states co
incide with the ones obtained in the Matsubara approach
using the marginality condition and the extremization w
respect tox, respectively. Moreover, as another confirmati
of Eq. ~62! we have verified that the free energy obtain
from the Matsubara computation40 equals the one obtained i
the TAP approach for all values ofb andG. In other words,
we have checked that

2bF5 ln (
a

e2bFa. ~63!

As a consequence the phase diagram that follows from
TAP approach coincides with the one obtained in Ref. 4
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2. TAP-out of equilibrium dynamics

The study of the real-time dynamics of the p-spin qua
tum model evolving in contact with an Ohmic quantum e
vironment has been performed in Ref. 39. The dynam
behavior is characterized by two regimes. At high tempe
ture and highG the system equilibrates in the paramagne
state via an equilibrium dynamics, whereas at low tempe
ture and lowG the systems ages and remains out of equi
rium also at infinite times. As in the classical case we ha
found that the long-time out-of-equilibrium dynamics
dominated by the threshold states. This is proven by the
that the equations forqEA and C(t) within the TAP ap-
proach coincide with the ones obtained from the study of
real-time dynamics, when the following limits are taken
precise order: limg→0limt→`limN→` . In order words, when
one takes first the thermodynamic limit, next the long-tim
limit of the system’s dynamics in contact with the enviro
ment and, finally, the limit as the strength of the coupling
the environment,g goes to zero. Notice that this equivalen
holds for the paramagnetic states also. Finally, we h
shown that the relationship between the effect
temperature57 arising in the asymptotic out-of-equilibrium
regime39 and the complexity is, classically,

1

TEFF
5

]s~b, f !

] f U
f 5 f TH

. ~64!

Note that the connection between TAP and real-time
namics is done by identification of several equations. A m
precise analysis, along the lines of Ref. 25, should prove
full equivalence of the two methods.

V. DISCUSSION

In this section we present some general arguments
allow one to recover the phase diagram of the quant
sphericalp spin-glass model. Since the free-energy landsc
plays a key role, we expect these results to have a cer
degree of universality and to apply to a large number
discontinuous glassy systems.

A. The static transition

Let us focus on two limiting regions of the phase diagra
around the classical phase transition (G50) and around the
quantum phase transition (T50). In the former case the
physics is well known and it is reviewed in Sec. II. Th
effect of switching on weak quantum fluctuations consi
only of a weak variation of the complexitys. For this reason
the effect of quantum fluctuations reduces simply to a va
tion of the thermodynamic (Ts) and the dynamic (Td)
transition temperatures@respectively, lines (1) and (3
in Fig. 4#.

At zero temperature and lowG the system is in the glass
phase~GP!, whereas at very highG quantum fluctuations
destroy the glassy phase and the system is a quantum
magnet~QPM!. As a consequence one expects that a qu
tum phase transition should divide these two regimes a
certain valueGs .
6-11
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At zero temperature the complexity is expected to rem
a smooth function of the free-energy density.58 Conse-
quently, Eq.~4! implies that the sum over the exponent
number of glassy states is always dominated by the low
states in free energy since theb f term in the exponentia
largely dominates in this limit~this is different from the clas-
sical problem in which other states dominate betweenTs and
Td). At zero temperature these are the states with lower
gular potential energy, i.e., withE5EEQ . Now, from Fig. 2
we conclude thats(EEQ)50 at zero temperature and for a
G. For this reason the mechanism behind the transition m
be totally different from the classical one. The transition ca
not be related to a configurational entropy that vanis
when approachingGs from above~‘‘entropy crisis’’! since
this quantity is always zero at zero temperature~see also Ref.
59!.

Indeed, according to Eq.~61!, if we assume that
]s(b, f )/] f ,1` when T→0, thenx→0 for all G in the
glassy phase. In the paramagnetic phase insteadx51. Thus,
x must jump at the transition. If the Edwards-Anderson p
rameter also jumps atGs , the susceptibility is discontinuous
and the transition is of first order thermodynamically. As
the previous case the effect of switching on thermal fluct
tions reduces simply, for lowT, to a variation ofGs @line ~2!
in Fig. 4#.

Another clue to the difference between the classical
quantum phase transition can be perceived by a techn
remark. It is well known that the paramagnetic solution
the classical problem remains stable in the low-tempera
phase. This is a spurious solution of the mean-field eq
tions, which has to be discarded in the analysis of the lo

FIG. 4. A schematic representation of the phase diagram th
expected to be generic for systems having a discontinuous trans
in the classical limit. Line(1), from (Ts,0) to pointB, represents
the static transition between the classical paramagnet~CPM! and
the glassy phase~GP!. The region in the shaded area between lin
(1) and (3) is the phase in which the CPM is fractured into
exponential number of TAP states. Line~2! from point B to (Gs,0)
signals the static transition between the quantum parama
~QPM! and the GP. Line (3) indicates the dynamic transitionTd as
a function ofG.
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temperature regime. In the quantum case, one also expec
find a spurious paramagnetic solution, which is the conti
ation of the classical paramagnet to low temperatures. T
solution exists to the left of line (1) in Fig. 4, consequen
one expects coexistence of two paramagnetic solution
physical one, which is the continuation of the quantum pa
magnet valid at low temperatures and highG, and a spurious
one, which is the continuation of the classical paramagn

In the classical case the transition is of second order e
if the order parameter jumps discontinuously. This pecu
behavior is due to the fact that near the transition the pa
magnetic state is fractured into an exponential number
states that continuously become the ones responsible fo
glassy phase at low temperature. This is not possible at
temperature~the quantum paramagnet is not formed by
collection of glassy states! and therefore it is reasonable t
expect a quantum first-order phase transition between
glass phase and the quantum paramagnet.60

Finally, note thatFQPM5FGP5FCPM on the pointB. We
then expect that a first-order transition line separating
QPM from the CPM starts at this point. This line should e
on a pointC given that for very large values ofG andT the
quantum and thermal fluctuations are so strong that the
tem becomes noninteracting and, in this case, only one p
magnetic phase exists. This line has been found in all qu
tum extensions of thep spin-glass. Furthermore, within th
accuracy of the algorithm, the dynamic and static critic
lines collapse at pointB. In the quantum model studied i
Ref. 38 this line has been detected and it was demonstr
in this paper that its length increases withp.

B. The dynamic transition

Now that the equilibrium phase diagram is complete
predicted from a qualitative point of view, we can focus
the nonequilibrium regime. As noted previously, low qua
tum fluctuations simply change the values ofTd but do not
change qualitatively the dynamic transition, which rema
second order in the sense that the asymptotic energy is
tinuous across the transition, but its derivative is not. T
remains true until the line (2) reaches the lineBC. After this
point the dynamic transition between the quantum param
net and the threshold states becomes first order, i.e.,
asymptotic energy is not continuous across the transit
This, of course, is very difficult to see numerically since t
discontinuity has a very small value.

C. Summary

In summary, through some general arguments based
the TAP approach we have predicted a phase diagram
should apply to a large number of discontinuous quant
glassy systems since its form is determined by the qualita
form of the free-energy landscape. Indeed, not only the qu
tum p-spin spherical model exhibits the phase diagram d
played in Fig. 4, but some other classical and quantum m
els share exactly the organization of phases a
transitions.16,17,38,49Note, however, that other scenarios a
possible. For instance, Ritort59 studied the phase diagram o
the random orthogonal model61 in a transverse field within
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the static approximation and found that at zero tempera
the phase transition remains of second order in the ther
dynamic sense. Within the free-energy landscape ana
developed before this suggests that, in the model studie
Ref. 59, the number of glassy states diminishes whenG in-
creases and vanish exactly atGc ~see Ref. 60!.

VI. CONCLUSION

In this paper we have derived TAP equations for a la
class of mean-field disordered quantum systems. Moreo
we have applied the TAP approach to a quantum exten
of the sphericalp-spin model. The study of this system
whose real-time dynamics and statics have been analyze
Refs. 39 and 40, has furnished an ideal benchmark to ge
alize to the quantum case several concepts developed
classical disordered systems. Armed with this knowled
founded on the study of the free-energy landscape, we h
shown that the same phase diagram, presented in Fig
naturally emerges in a large class of quantum disordered
tems, those having a classical discontinuous transition.

Whether other models like the SK model in a transve
field or its soft spin version studied in Ref. 42 also have su
crossover in the transition from the disordered to the orde
phase is an issue that deserves scrutiny. For the momen
study of models with a classical continuous transition h
shown this feature. However, it might have been masked
the methods used in previous studies. The soft SK mo
might be the easiest example with which to answer this eq
tion via, e.g., a careful application of the replicated Matsu
ara approach.42

We would like to stress that the TAP approach furnish
an alternative and more transparent route to replicas, w
also has the advantage of showing explicitly the weaknes
the mean-field description. Let us cite one example. T
marginality prescription in the replica approach become
more transparent statement in which the nonequilibrium
namics is dominated by the TAP states that are margin
stable, i.e., the flatness of the free-energy landscape ar
these states is responsible for aging. Concerning one o
weaknesses of the mean-field description we would like
emphasize that the enormous number of pure states~with
different free-energy densities! found for mean-field models
cannot persist in finite dimensions and the majority of th
should becomemetastablestates. How this changes th
mean-field scenario is an active domain of research for c
sical systems.62

We remark that interesting continuations of our work co
cern, on the one hand, the application of the TAP appro
to different quantum mean-field models32,34,35 and, on the
other hand, the generalization of the static quantum T
approach to real-time dynamics~for classical systems thi
has been done in Ref. 25!. This would allow one to show the
relationship between long-time dynamics and free-ene
landscape for quantum systems directly. Finally, the pre
definition of a ‘‘quantum state’’ is a delicate matter and m
its further analysis. In this paper we have simply called
‘‘state’’ the minimum of the TAP free-energy density. On
possible way to verify the existence and stability of the
01420
re
o-
is
in

e
er
n

in
er-
for
,

ve
4,
s-

e
h
d
no
s
y
el
a-
-

s
ch
of
e
a
-

ly
nd
he
o

s-

-
h

P

y
e

-
a

e

states is by studying the dynamics of this system star
from particular initial conditions as done in Refs. 52 and
for the classical model. This study is underway.63
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APPENDIX A

In this appendix we show that the equation forqEA that
leads to a solution with the correct physical properties is
~34! with the minus sign. Indeed, we search for a soluti
that corresponds to a minimum of the TAP free energy. T
full stability analysis, which involves the evaluation of th
complete Hessian of the TAP free energy, is rather diffic
and has to be done numerically@for instance, the form of
C̃(v) can only be obtained numerically#.

However, we can still perform a partial analysis that s
fices to justify the choice of the minus sign. Let us conce
trate on the following diagonal elements of the Hessian:

d~2bF !

dqEA
2

52
1

2 F S 12
p

2D C̃~0!1
p

2
bqEAG

3F 1

~C̃~0!2bqEA!2qEA

2
p~p21!

2
qEA

p23G ,

~A1!

]~2bF !

]C̃~0!]C̃~0!
5

21

@C̃~0!2qb#2
1

p~p21!

2b E
0

b

dtCp22~t!.

~A2!

From thez6 definition we find

z2<
2ETH

p21
, z1>

2ETH

p21
. ~A3!

Since qEA is fixed by Eq. ~34!, the second factor on the
right-hand side of Eq.~A1! is positive ~negative! for z2

(z1). A stable solution corresponds to a negative value
Eqs.~A1! and~A2!; therefore one has to take the solutionq9
for z2 andq8 for z1 . Moreover, since forE,ETH the right-
hand side of Eq.~34! is positive, then we obtain thatC̃(0)
2bq8 and C̃(0)2bq9 are positive, and using that

S 1

b E
0

b

Ca~ t !dtD>S 1

b E
0

b

C~ t !dtD a

, a.1

and imposing that Eq.~A2! has to be negative, we obtain

1

@C̃~0!2bqEA#2
2

p~p21!

2
qEA

p22>0 for q5q8,q9.
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But this is impossible forz1 , i.e., it is not possible to have
consistent stablez1 solution.

APPENDIX B

In this appendix we give an argument in favor of th
relationbx5]s(b, f )/] f in Eq. ~61!. Let us start by assum
ing that it does hold and see that it leads to the equa
linking x, qEA , andC(t) in the Matsubara approach. First o
all we write the derivative ofs with respect tof as a deriva-
tive with respect toE. This can be easily done by noticin
that differentiatingf in Eq. ~13! with respect toE at b andG
fixed is equivalent to differentiatingf with respect toE at
b,G,qEA , andC(t) fixed becausef is stationary inqEA and
C(t). As a consequence we find
01420
n

bx5
]s

] f
5

]s

]E
]E
] f

5
]s

]E qEA
2p/2. ~B1!

The derivative]s/]E can be easily computed from Eq.~44!.
One arrives at

p

2
5@C̃~0!22b2qEA~x21!1bqEAC̃~0!~x22!#21.

~B2!

In summary, starting from the TAP approach at fixedE we
obtainqEA andC(t). Assuming then that Eq.~61! holds we
obtain the equation linkingqEA and x in the Matsubara ap
proach. The equations forC(t) in the TAP and Matsubara
approaches, onceqEA is fixed, are identical. Hence we hav
proven that Eq.~61! leads to the Matsubara results in Re
40. The proof will be complete if we showed the other sen
of the implication.
.
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