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We derive Thouless-Anderson-Paln{@AP) equations for quantum disordered systems. We apply them to
the study of the paramagnetic and glassy phases of a quantum extension of the splsmicajlass model.
We generalize several useful quantitieemplexity, threshold level, efcand various ideagconfigurational
entropy crisis, etg¢.that have been developed within the classical TAP approach to quantum systems. The
analysis of the quantum TAP equations allows us to show that the phase diggnaperature versus quantum
parameter of the p spin-glass model should be generic. In particular, we argue that a crossover from a
second-order thermodynamic transition close to the classical critical point to a first-order thermodynamic
transition close to the quantum critical point is to be expected in a large class of systems.
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[. INTRODUCTION ries, at fixed order parameter, of the free energy can be used
to derive TAP-like equations and its corrections for models
Glassy systems of extremely diverse types exist in naturan finite dimensions or, equivalently, with finite range inter-
They all share several common features like a very slowactions. The connection between the TAP approach and the
nonequilibrium dynamics. The development of a full theoret-more standard analysis of the partition function of a disor-
ical description of the glassy phase is one of the most impordered model has been exhibited by De Dominicis and
tant challenges in condensed matter physics. A variety ofoung, who showed that, for the SK model, one recovers
techniques that range from scaling arguments to mean-fielghe equilibrium results of the replica or the cavity methdd
approaches has been and is still used, with the aim of ajia weighted Boltzmann averages over solutions of the TAP
tempting a satisfactory description of the glassy properties.equations. More recently, the TAP approach has been ap-
One of these techmques is due to Thouless, Andersorplied to other classical disordered models. In particular, two
and PalmefTAP)," who introduced an approach to classical models that we shall discuss in the following, the spherical
disordered systems based on the study of a free energy langnd Ising p spin-glass modet$'® and the Ghatak-
scape. The key object is the Legendre transform of the freesherrington(GS) model!®!’ have been analyzed with this
energyF(B)=— InZ/B with respect to a number of order method®-2°
parameters that are sufficient to describe the transition and Glassy systems, and in particular disordered ones, are
the different phases in the system. This function behaves asharacterized by having a very slow dynamics with nonequi-
an effective potential whose minima represent different postibrium effects at low temperaturé&??> Mean-field models,
sible phases. In a classical fully connected Ising model onlyike the sphericap spin-glass modéf or the SK spin-glas&’
one order parameter is needed, the global magnetization capture this phenomenology. The dynamic solution for the
=2i(s;)/N. The two possible minima @ (3,m) correspond evolution starting from random initial conditions that repre-
to the two possible states of positive and negative magnetsent a quench from high temperatures analytically is inti-
zation, m==my(T). Focusing on the Sherrington- mately connected to the structure and organization of TAP
Kirkpatrick (SK) mean-field model for spin-glasses, TAP solutions. One of the most striking results of the dynamic
showed thatall the local magnetizationsm;=(s;), i analysis ofp spin-glass-like models is that the energy density
=1, ... N, have to be included in order to derive the rel- (and other one-time quantitiesonverges asymptotically to
evant free energy landscape. The extremization condition ahe energy density of high-lying solutions of the TAP equa-
the TAP free energy on tha;’s leads to the TAP equations. tions. This level has been callédreshold The energy den-
It was soon after realized by Bray and Mobfethat the  sity in equilibrium is different. This and other related results
number of solutions to the TAP equations for the SK modelsuggest that an interpretation of the dynamics in terms of a
is exponential in the number of spins in the system for temmotion in a TAP free-energy landscape can be giiefhe
peratures below the spin-glass transitfo.very useful al-  generalization of the TAP approach to dynamics that has
ternative derivation of the TAP equations was given bybeen developed in Ref. 25 allows one to make this statement
Plefka® who showed that these equations can also be obprecise: the evolution is determined by a gradient descent in
tained from a power expansion of the Gibbs potential up tahe TAP free-energy landscape with the most important ad-
second order in the exchange couplings. The advantage dition of non-Markovian terms.
this derivation is twofold: it allows one to show convergence Usually, glasses can be analyzed with a fully classical
of the power expansion for all temperatures and it is easiapproach since their transition temperatures are rather high.
applicable to other mean-field glassy models. MoreoverNevertheless, in many cases of great interest the critical tem-
Georges and Yedidiashowed that the high-temperature se-perature can be lowered by tuning another external param-
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eter, and quantum fluctuations become very important. Thigransition in the planeT/J,D/J) has been exhibited in an
is the case for the insulating magnetic compoundapproximate solution (one-step replica symmetry
LiHo,Y;_4F,;, which is an experimental realization of a breaking.!®!” The exact solution has not been derived yet
quantum spin-glass, and currently receives much atteftion.and it is then not well established if the model has a true
Other examples where glassy properties in the presence @fst-order thermodynamic transition.
quantum fluctuations have been observed are mixed hydro- |n quantum problems, first-order transitions have been re-
gen bonded ferroelectric-antiferroelectric crystalteract- ported in three models. The first one is the so-called “fermi-
ing electron systen®, cuprates such as baSLCUO,*™  onic Ising spin-glass” analyzed by Oppermann and
and amorphous msulato?_%. o Rosenow” This model, however, is thermodynamically
The quantum fluctuations in LiHY¥, ,F, can be con-  gquivalent to the classical GS model discussed aBbvae
trolled by tuning the strength of an external field that is transgther two models are very similar indeed and they are dif-
verse to the preferred direction of the randomly located magferent ways of extending the classical sphericapin-glass
netic impurities. After a series of experiments presented iModef* to include quantum fluctuations. In one case, the
Ref. 26 the authors’ conclusions are the followiitigh The  continuous spins are generalized M>component vectors
samples undergo a paramagnetic to spin-glass transition if,q a global spherical constraint and commutation relations
the (T,T') plane, wherd =H¢ andH, is the strength of the  are imposed® The other case uses the fact that the spherical
transverse field(2) The transition is of second ordén the  p spin-glass model can be interpreted as a particle moving in
thermodynamic sengeclose to the classical critical point an infinite-dimensional hypersphere with a random potential.
(T=T,,'=0) but crosses over to first order close to theQuantization is then done by imposing commutation rela-
quantum critical point T=0,"=T). (3) The system under- tions between coordinates and momeiit®:**The latter can
goes out-of-equilibrium dynamics in the glassy phase agiso be interpreted as an extension of the quantum rotor
demonstrated by the fact that the dynamics strongly dependfiodef* that includesp interactions. The relation between
on the preparation of the sample for all subsequent timegne critical properties of the quantum versiongpafpin-glass
explored experimentally. models and the experiments in Ref. 26 has been put forward
The theoretical study of quantum spin-glasses started witfh Ref. 40. In addition, the connection between the static
the analysis by Bray and Moore of the equilibrium propertiescalculation supplemented by the marginality condition and
of the fully connected Heisenberg modelin this article, the analysis of the out-of-equilibrium dynamics in contact
Bray and Moore introduced a path-integral representation ifyith an environment developed in Ref. 39 was also dis-
imaginary time of the partition function that they analyzedcussed in Ref. 40. However, the reason why the transition
with the replica trick. Many articles on the equilibrium of changes from second to first order close to the quantum criti-
this and related mean-field models have been publishegal point was not clear from this analysis. It is one of the
since®** The static properties of low-dimensional models aims of this article to clarify this point and to study to what
have been studied, and it has been shown that, in finite diextent one can claim it to be general, with the use of the TAP
mensions, Griffiths-McCoy singularities are very importantapproach.
close to the quantum critical poifit.n all these models, the Quantum TAP equations for the SK model in a transverse
transition from the paramagnetic to the spin-glass phase h3gld have been presented by Ishii and Yamarfioémd De
been reported to be of second order throughout. Cesareet al®® The former use a perturbative expansion of
In most classical disordered models studied so far thehe free energy in the strength of the transverse field and then
transition from the disordered to the ordered phase is of segollow closely the techniques of TAP; the latter implement a
ond order in the thermodynamic sense. In the exact solutioBavity method. These derivations are specific to the SK
of the SK model, the spin-glass order paramefed) is con-  model and they cannot be simply extended to go beyond the
tinuous at the transition that is of second order in the theryicinity of the continuous transition and to derive a useful
modynamic sens&ln other classical glassy models such asexpression for the TAP free energy. The TAP equations de-
the Potts glas$ or the spheric4f and Ising>*® p spin-  rived by Rehker and Oppermalirfor the fermionic spin-
glasses, the order parameter jumps at the transition thaglass model coincide with those presented by Yo¥otar
however, is still of second order in the thermodynamic sensghe classical GS model since these two models are thermo-
since there is neither a jump in the susceptibility nor a latentiynamically equivalent?
heat. A classical model that exhibits a first-order transition is  Hence, our aim is twofold. On the one hand we want to
the anisotropig spin-glass,p=3, in which the spins take present a useful quantum extension of the TAP approach to
integer values between S and S and there is an extra term the statistical properties of disordered systems. Thus, after a
in the Hamiltonian— DEisiZ, proportional to a coupling con- short summary of the classical TAP approach in Sec. Il, we
stantD that controls the crystalline tendency. In this case, aiscuss in Sec. Il the derivation of the quantum TAP free
crossover from a second-order to a first-order thermodyenergy and TAP equations using a general approach that ex-
namic transition in the planeT(J,D/J) has been exhibited tends those developed by Plefikend Georges and Yedidfa.
in the exact solutiod’ The classical GS modélis another ~The advantage with respect to previous derivations of quan-
candidate to exhibit a second- to first-order crossover in théum TAP equations is that this method can be applied to any
thermodynamic transition. It is the anisotropic extension ofquantum disordered model and that it allows one to obtain
the SK model, or theg=2 limit of the previous model. In the TAP equations as well as the TAP free energy. The
this case, a crossover from a second-order to a first-ordémowledge and the analysis of the TAP free energy is one of
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the major keys to understand the physics of mean-field

glassy systems in the classical as well as in the quantum Z=2, Mf,B)exp—BNf), 3
case. In Sec. IV we present, as an example, the TAP free ¢

energy and TAP equations for the quantum extension of thevhere the factorV(3,f) is the number of solutions with
p-spin spherical spin-glass model studied in Refs. 39 and 40LAP free-energy density

We show that the TAP equations can be easily related to the F(8,m“)/N=f. One can now replace the sum by an in-
equations for the order parameter in the Matsubara replicgegral and set the factok(3,f) in exponential form; this
approach and also to some of the equations appearing in thyéelds

real-time dynamic approach. The TAP analysis of this model

furnishes a benchmark to study the generalization to the lim 1 InZ= lim 1 In(fdfexp—N[,Bf—(r(ﬁ ]
quantum case of the methods and interpretations developed N N N ' '

for classical systems. Section V is devoted to the second aim (4)
of this article. Via the TAP approach we show that the same ) o _

a discontinuous phase transition in their classical lihiese ~ complexity

are models solved by a one-step replica symmetry-breaking 1

ansatz within the replica analysisn particular we relate the o(B8,H)=lim = In[MB,f)]. (5)
first-order transition close to the quantum critical point to the N_o N

structure of metastable states. Finally, we present our con- ! . _ .
clusions in Sec. VI. The configurations that dominate the sum are those having a

free-energy density such that it minimiz8$—o(B,f). The
identity between the partition function and the weighted sum
Il. THE CLASSICAL TAP EQUATIONS: A SHORT over TAP solutions has been demonstrated for many other
SUMMARY model$®t35 and it is generally believed to hold for any

In this section we present a short summary of the classicemean'f'eld disordered system.

TAP approach to mean-field disordered spin models. The In th%lfOllOng we focu_s on “dlsc_ontmuqus gl_assy
classical TAP free-enerdyis the Legendre transform of the systems™- that are characterized by having a discontinuous

free energy with respect to local magnetic fields transition (the Edwards-Anderson order parametgga
' jumps that is still of second order thermodynamically.

Within the replica analysis of the partition function these
— BF(B,m;)=Tr exp( —BH- hi(ss—m;)|, (1) models are characterized by a one-step replica symmetry-
i breaking solution below a static transition temperatlite
and a replica-symmetriéRS) solution that corresponds to
where h; are Lagrange parameters enforcing the conditiorthe paramagnetic phase®t T,. However, for intermediate
(siy=m; . The function— BF(B,m;) is an effective potential temperaturesT,<T<T, there are a number of nontrivial
that depends on the local magnetizations. The Lagrange COTAP solutions exponential il that combine themselves in
ditions —gBF/dm;=h;, called the TAP equations, fix the such a way that the sui@) is identical to the RS result.
local magnetizations as functions of the local magnetic The relationship between metastable states and replicas
fields* The solutions{m®} of the TAP equations are sta- has been put forward in Refs. 46,51 and 53. Indeed, consider
tionary points of F(8,m,). If they are also stabléall the  x different identical system§‘clones”) coupled by an at-
corresponding eigenvalues of the free-energy Hessian ateactive, infinitesimalbut extensivginteraction. When there
positive), they are identifietl with pure states, also called exist many pure states all the clones fall into the same state
TAP states. This interpretation was put forward by De Do-and the free energy for the systemxolones reads
minicis and Yound, who showed that the partition function
in the classical SK model can be written as a weighted sum lim -1 InZ.= lim -1 In f df expl — N[ Bxf
over the stable solutions of the TAP equations: N BN X Noe BN

—o(B.H1} (6)

On the other hand, the computation of the left-hand side of
Eq. (6) can be performed within the replica formalism:

Z=§ exf — BF(B8,mY)], 2

where the indexa labels different TAP statesn® is an

N-vector encoding the local magnetization in the solutign lim __1 InZ.= lim __1 nZ.= lim __1 InZ"

F is the extensive TAP free energy of such a solution, and ., BN N ¥ Newno BN X

the sum runs over all TAP solutions. Consequently, the static 7)
average of any observable can be computed from(BqgAt )

low temperatures the TAP free energy has a large number g¢here the overbar represents the average over disorder.
minima. If one groups different TAP states with the sameSince the attractive coupling between thelones is infini-

free energy in set€, then the partition function can be writ- tesimal, the computation of the right-hand side of Eq.

ten as reduces simply to the calculation of Imo(x/n’)lnzn',
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where the replica-symmetry between the groups of These are the threshold statesTgtand other states when

x-replicas fi’ =nx) is explicitly broken. When the system is T<T4. Hence, in the rangd . <T<T, saddle-point solu-

in the replica symmetric phas& {<T), this reduces to study tions (corresponding tx=1) that are not absolute minima

of the one-step solutions nonoptimized with respect:to of F dominate the integral since their number scales expo-
nentially with N. The final result for the free-energy density

1 in this temperature range coincides with the one of the pro-
— lim ,B_Nm f df exp{—=N[Bxf—a(B,1)]} longation of the paramagnetic solutigwhich actually does
N=e not exis). A naive replica computation fails to signal the
= XEXtrg_, fre Ggai 8.X), (gy  difference between a true paramagnetic solution and the en-

semble of nontrivial TAP solutions witlm;#0. The dy-
namic approach detects the change in free-energy landscape
at T4 since the system cannot reach equilibrium for any tem-
perature belowr .23
(3) Low temperatures £ T. At the static transition tem-
dderature the complexity of the TAP solutions, which domi-
_nates the sunf4), vanishes. The static transition appears as
an entropy crisissince the part of the total entropy that is
related to the large number of states disappears.Tof ¢
the TAP states that dominate the integral in E4). corre-
spond to the equilibrium glassy phase. Dynamicallydoes
not play any role. The out-of-equilibrium dynamics is domi-
nated by the threshold states, which are the highest ones in
90(B.1) free-energy and which are characterized by flat directions in
K= — (9) the free-energy landscape.
ot Note that via the TAP approach one can obtain a reason-

L _able justification of the marginality conditidhoften used to
Note that within this framework one does not have to Opti-gpain information about the out-of-equilibrium dynamics

mize with respect ta. Insteadx is a free parameter and, by giariing from a pure equilibrium computati®hindeed the
changing the value of, one can consider different groups of \51,e ofx fixed by the marginality condition corresponds to
metastable states. the TAP states that are marginally stakithe threshold

The analysis of the TAP equations reveals three temperasiaieg: the flatness of the free-energy landscape around these
ture regimes for discontinuous glassy systems: states is responsible for agiRy.

(1) High temperatures J<T. The system is in the para-
magnetic phase; the paramagnetic TAP solutigs- 0, for

wheref ¢, is the free energy computed by using replicgs,

is the Edwards-Anderson parameter, arid the break point
(or the size of the blocks in the replica majri¥or simplic-
ity we consider that the interstate overlgpequals zero. The
definitions of these parameters are standard in the repli
approact, and they will appear in the analysis of the quan
tum p spin-glass model in Sec. Ill. Since the integral on the
left-hand side of Eq(8) is dominated by a saddle point con-
tribution, one finds that, for a given temperature, fixing the
value ofx is equivalent to summing over states with a given
energy density. The relationship betweehand x reads

IIl. THE QUANTUM TAP EQUATIONS

all i, dominates the sum anfhy=— InZ/(BN). T4 is the

dynamic critical temperature. AbovE, the dynamics start- In this section we present a simple procedure to derive
ing from a random initial condition converges asymptotically TAP equations for generic completely connected quantum
to the paramagnetic solution. systems. We also expose the physical meaning of the quan-

(2) Intermediate temperaturess¥T<Ty. The replica tum TAP equations by the cavity methbd.
analysis of the partition function indicates that the system is e are aware of two publications where TAP equations
still in the paramagnetic phase. However, the study of thgor quantum systems have been already presefit&€dnith
TAP equations and the dynamics show thaf gtthe para-  respect to these works our derivation is more systematic, is
magnetic solution is fractured in a number of minima expo-simple, and allows one to obtain the TAP equations as well

nentially large inN of the TAP free-energy>%°***Indeed  as the TAP free-energy for any completely connected quan-
one can recover these results also by the replica method. fym disordered system.

careful replica analysis shows that there exist one-step solu-
tions in these temperature regimes other than the paramag-
netic one. These solutions are in one-to-one correspondence
with groups of states with a given free-energy density The formalism that we use to derive TAP equations for

[through the relationshig9)]. For instance, one can follow generic quantum problems is very similar to the one de-
the evolution of the threshold statéie states with highest scribed in Refs. 5 and 6 and, it follows even more closely,

free energy by tuning the parametet. For these states the one used in Ref. 25 to obtain the dynamical TAP equa-
=1 whenT=T4 and x decreases at lower temperatures.tions for classical disordered models. We focus on systems
Moreover, the dominant contribution to E@}) is given by  characterized by the potential energy,

the states characterized ky-1, i.e., those with free-energy

density such that
Y Hi=— 2 23,

A. Formalism, notations, and models

da(B,f)
= T (10) a=1,...m (11)
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wheres may represent an SB) spin (m=3), a rotor fn  Once the TAP free energy is known, one can derive the
>1), a spherical spinmi=1), or a space coordinatan( TAP equations as Legendre relations,

=1), andJ;, ;, the couplings between the differest,
_ 1r--dp _ : . SBF 2 S8BF
are independent random variables with zero mean and vari- — ———=hi(7), — o ———=A(7,7). (16
. om;(7) N '
ance: [ oC(r,7")
F2p Until now we have not used the scaliig2), and all these
—(J_ —2_ P _ (12) definitions can be equally applied to finite-dimensional sys-
AR 2NP~1 tems. The great simplification due to the mean-field character

of the interactions in Eq12) is unveiled if one performs a
As a consequence the following derivation appliegdom-  perturbative expansion of Eq(13) in « and writes
pletely connectedHeisenberg models, quantum rotor mod- — gF(3,m;(7),C(7,7'),a) as a power series ia:

els, and quantum continuous systethvithout loss of gen- — BF(B,m(7),C(7,7),)
erality and to simplify the notation we shall suppress the R
index « in the rest of this section. Z 1 9" —BF(B.m(7),C(7,7),a)]
For classical spin-glasses TAP showed that all the local = nr = a. (17)
magnetizationsm;, i=1,... N, are needed to derive the n=o0r - a=0

relevan.t free—ene.rgy density .to describe _the metas.tablﬁ fully connected models, if one chooses the correct order
properties: If one is interested in the dynamics of classical

) - arametergwhich arem;(7) and C(7,7') in the quantum
disordered mean-field systems, one has to use a Legeno@gsé' the perturbative expansigth?7) around the pure kinetic

transform not only with respect to all time-dependent local,,
magnetizationsn;(t), but also with respect to the autocorre-
lation C(t,t") = (1/N)Z(si(t)s;i(t')) and the linear response
R(t,t")=(LN)=Z;8(si(t))/ shi(t")[h=0>°

eory is actually a simple sum over three terms. Higher-
order terms in the series vanish in the thermodynamic limit
due to the scaling ofli1 _____ i with respect toN. In more

In order to describe the metastable properties of a quangeneral cases, in finite dimensions, this will not be the case

tum disordered model we shall show that it is necessary t@nd Eq.(ﬁ?) at;ecor;es a .ﬁll %>_(pan5|p% around mean-field
use a Legendre transform with respect to the local averag@eory' whered Is the spatial dimension. L
Let us consider in more detail the terms arising from the

coordinates, m;(7), and the autocorrelation function in expansion (17. The zeroth-order one is simply
imaginary time,C(7,7'). The quantum TAP free energy —BF(B.m(7).C(7.7').0), i.e., the free energy oN free

reads ) | R
spins constrained to have local magnetizationér) and a
- BF(B,mi(7),C(7,7"),a)| =1 global correlation functiorC(7,7"). This term depends only
L p on the nature of the degrees of freedom, whether they are
B SU(2) spins, rotors, or space coordinates. In particular, it can
=In f Ds( T)GX[{—% Jo dr{Hi+ aHp(s)] be analytically computed only i§; are spherical spins or
space coordinates. In the other cases, one has to resort to

1 (B Bh approximations or numerical computations.
+ﬁ . dTJO dT'Z A(r,7") The first-order term is the naive mean-field free energy:
J(— BF) 1 J’ﬁﬁ
1 (Bh — . s ..-.5
X[C(T,T')_Si(T)Si(T’)]‘F% Jo dTEi: hi(7) da ‘a—O hJo i <<y i 'p<S'1 S'p>“=0
_l fﬁﬁ J
x[mi(7)—s(7)] , (13 Th o i, T FULARRLLA

a=1 (18)
where H, is the kinetic energyDs(7) indicates the func- Note that the decoupling of the spins fer=0 is essential to
tional measure on the configuration space, arid a param-  obtain the last identity. The second-order term depends on
eter whose role will be clarified in the following. For in- the correlation function and the overlap functiQ{(r,7")
stance, ifs are SU2) spins,H, is the Berry phase and the =3,m,(7)m;(+')/N only and equals

functional measure is restricted to periodic functig(s)

(with period B) satisfying the constraing’(7)=1. The NJ2
sourcesh;(7) andA(r,7') have the role of Lagrange multi-

Bh gl
J drf d7r’'{CP(7,7")—QP(7,7")
0 0

1752
pliers fixing the average value of the coordinates and the ah
correlation: —p[C(r,7)=Q(r,7)]QP L(r, 7))}, (19)
mi(7)=(si(7)), (14 Using the scaling of the couplings with and the same ar-
1 guments developed for classical systerfsye have verified
C(r7')= 5 Z (si(D)si(7). (15) that all ordersn=3 in the serieg17) are suppressed in the

thermodynamic limit.
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B. A cavity interpretation N-1 spins + cavity cavity + Weiss fields

First of all, let us write the TAP equations in a way that
allows one to clarify the physical meaning of the different
terms:

N-1 spins

5(_ﬁF) . "A . hcav
— 2| =h®Yq) ® .
smi(n) | _, —= G
= —i2<2<ip Jiigeigmi (1) -my (7)
1 Bﬁd | p(p—1) (r7) FIG. 1. A schematic representation of the action of e 1
f Jo T 2 [Q(7.7 spins on the cavity, which, due to the infinite connectivity, simply
reduces tch™ and G,

—C(7,m)IQP 2(7,7") mi(7"), (20 )
where(-)y_ represents the thermal average with respect to
the system with théth site removed(s,)y_1 is not simply

2 8(—BF) p . equal tom,, which is the mean magnetization for the system
N3G =G*(r7)=5[Q"  (n7) of N spins. A correction term, first discovered by Onsager,
(17 =0 appears:
—CP (7)1, (21
The solutions to these equations are expected to be time- B 1 (s 5mk(T)J ,
translation invariant since we are developing a description of (SON-1=M,— 7 T he(7') ikMi(7")

equilibrium and metastable properties. Therefof®' is in-
deed independent of the imaginary time a@& depends Bh
only on the difference betweenand 7' Mg J'O drC(7)=QNimi. (24
An understanding of the meaning of the quantum TAP
equations follows from the analysis &ffor «=0. Indeed,
by tracing out all the spins excegtin the partition function  Plugging Eq.(24) into Eq.(23) and using the scaling of the
produces a single-site measiffer s;) whose action reads  couplings withN, one recovers the expression i’ given
in Eq. (20) in the p=2 case, whereas foG°® a similar
1 (B cav computation gives back the expression given in Eg1).
7 fo drlH(si(7)+hi™(7)si(7)] Finally, we remark that the main difference between the
classical and the quantum TAP approach is that in the latter
B the cavity interaction consists not only in a cavity field but
drf dr'si(7)G®(7,7")si(7'), (22)  also in the “Weiss function"G®®(r— 7'), which is a func-
0 tion of (imaginary time. This already happens in the mean-
field theory of quantum nondisordered systéhfer which

whereH(s;(7)) is the kinetic energy for the spig . As a . .

. . local quantum fluctuations are taken into account exactly,
consequence the TAP solutions are the self-consistent rel%\?hereas the spatial ones are frozen. For disordered svstems
tions that relat&z°®(r,7') andh{®/7) [which are functions b ' Y ’

£ C(r d Clr ) and btained f even in the limit of infinite dimensions, one has to take into
of C(7,7') andmi(7)] to C(7,7) andm(7) obtained from .04t not only the local quantum fluctuations but also
the single-site actio22).

) . . some spatial fluctuations: all the instantaneous magnetic
.Equatlons(ZO) and ,(2_1) show that the action on \,tmh fields have the same variance but their averaged values fluc-
spin of theN—1 remaining ones reduces simplyhf*’ and tuate from site to site.

G (see Fig. 1 This implies that tracing out all the spins

but theith one produces a Gaussian measure for the instan-

taneous magnetic fieldsi(7)==2i,<...<iJi,....iS;"" v, A CONTINUOUS DISORDERED QUANTUM MODEL
i whose mean and connected two-point correlation func-

tion equal, respectiveyh® and G*®(7— 7').

The expression oh® and G*®(7—7') can be justified
within the cavity method.Let us focus for simplicity on the
p=2 case for which

1 Bh
2#2 Jo

In this section we apply the method of Sec. Il to the
study of the quantum sphericplspin-glass model. We de-
rive and analyze the TAP free-energy density and the TAP
equations for the local magnetization and correlation func-
tion in imaginary time. We relate these equations to the
equation for the order parameter in the Matsubara replicated
hoaV= _E JidSON-1, (23 approach to equilibriu_r_n z_;md in the _Schwinger-KeIdysh ap-
K proach to the nonequilibrium dynamics.
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A. The model and its TAP equations

A model of a quantum particle with positichand mo-
mentump that moves on ail-dimensional random environ-
ment is defined as

2 N

p
oM > i

ig<--<ip

H[p,sJ]= SHEREL e (25

A Lagrange multipliez enforces the averaged spherical con-

straint,

3% sf)=1. (26)
N =
The random interaction strengtl:it$1 are taken with

zero mean and variance defined in EtR). This model is a
possible quantum extension of the spheripakpin-glass

PHYSICAL REVIEW B 64 014206

Finally, settingh;(7) =0 and using the fact that at station-
arity, my(7)=m;, Q(7,7)=9ga, z(7)=2z, and C(7,7")
=C(7—7'), the previous equations are simplified to

1aZC(T .
X[C(7")—Qeal+ 2 C(7) —qgal — &(7)
(29
zm=_ > i, ipMiys M
I2<-~-<Ip
+mlgf d7’[CP Y7 )+ (p—2)glA
—(p—1)C(7")aRA%l. (30

model introduced in Ref. 44 and it is a particular realization

of the class defined in Eq411) corresponding to space coor-

dinatess; constrained to move on ld-dimensional sphere.
The zeroth-order term of the expansi@h7) can be
readily computed for this model. By setting= 1, rescaling

time according tor— 7#/J, and defining the “quantum pa-

rameter” I'=#%2/(JM) we obtain the following expression
for the quantum TAP free energy given in H43):

N (azc)
—BF——TrIn(C Q)+—Tr
B
+jo dTi1<Z<iin1 """ ipmil(T)'”

N (8 B
+—f drf d7’{CP(7,7")—QP(7,7")
4)o 0

—p[C(7,7")=Q(7,7)]Q (7, 7")}

NS

> dTZ(T)[C(T 7)) —1].

(27)

The physical parameters;(7) andC(r,7') are fixed by the
qguantum TAP equation€l 6):

2 iy

,ipmiz(T)"'
'p

mip(T)

(e~ iy PP

X[Q(7,7)=C(7,7)]1QP2(7,7") [m(7"),

21 8(r—7)=(C—Q) =7 )+ 8(r—7")
1 92
XFﬁ+g[Cp_l(T,T’)—Qp_l(T,T’)]. (28

B. Analysis of the quantum TAP equations

In the classical case the TAP equations admit a large
number of solutions at low temperatures. In the following we
shall show that this remains the case when quantum fluctua-
tions are included in a certain regime ®fandI". Further-
more, we shall classify them by their Edwards-Anderson pa-
rameters. Finally, we shall exhibit several properties of the
TAP solutions valid at low temperatures.

1. A simple equation of the Edwards-Anderson parameter

Let us analyze in detail the equations for the local mag-
netizationsm; . First, we note that a simple equation that
relatesqg 5 to the potential energy density derives from Eq.
(29). In fact, by multiplying Eq.(28) by m; /N and summing

overi=1,... N one obtaingfor h;=0)
Uea p
0=—= — 4 — J: S mi - -m:
G0 pamn N gty T o
p(p— )

[C(0)— Baealala’. (31
where we introduced the discrete Fourier transform of the
correlation

Clw)= foﬁdTeWC(T). (32

Following Kurchanet al,*? we introduce theangular vari-
ableso;=m;/\/gg and define thengular potential energy
density

1
Eo=-y 2 I

SO . 33
N il<...<ip Ulp ( )
For any fixed energy levef, Eq. (31) becomes a second-
order polynomial equation fogg,; the solution is deter-
mined by

014206-7
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~ 1
GER (C(0)~ Blenl=2-= = [~ E(0)= JEx (o) — €3],

(34)
andé&,,, called the threshold value, is given by
[2(p—1)
En=— p (39

The right-hand side of Eq34) has to be real. This imposes

the condition€<&7y sincef is a negative quantity.

For each sign in Eq(34), its left-hand side has a bell

shape as a function @fz,. It vanishes afjg,=0 andqggp
=C(0)/8 and attains its maximum atqggs=(1
—2/p)C(0)/B. Hence, at fixed values &f and T, Eq. (34)
has none otwo solutions,qea=q’,q", with

(1—2/p)C(0)

osg/'s———, 36
q 5 (36)
(1-2/p)C(0) _ , _C(0)
B <a's—3 (37

[we assume, as expected, tie{tr) is positive for all7]. In
the classical case, the minus sign in E2f) leads to a value
of gga that is @ minimum of the TAP free energy for &ll

<&ty - The Edwards-Anderson parameter determined in thi

way has the expected physical behavibin Appendix A we

show that in the quantum case one has to choose the min

sign in Eqg.(34) too. Thus,qg, is determined by

~ 1
B2 '[C(0)~ Bgeal= G V(o) — &2,
(38)

This equation still has two solutions. It can be proven that

the solution with the larger absolute value @qf, has the

correct physical properties. In particular, it is connected to

PHYSICAL REVIEW B 64 014206

2. Multiplicity of TAP solutions

Equations(34) reveal an interesting structure of the TAP
equations(29) and (30). For a given value of the angular
potential energy the TAP equations decouple in two differ-
ent sets: Eqs(29) and (34), with the spherical condition on
C, determine the correlation function, the spherical param-
eter, and the Edwards-Anderson parameter, whereas EQs.
(30) determine the angular variables only. They read

paEa%oi=—pélo)oi=p > Jiiig, i iy T
I2<---<Ip
(40)
p(p—2)B ,_, P(p—1)~ _, =
p=z—————Q +——5—C(0)g" *=5(0),

(41

where we have defined
E(O)EE CP~1(7) (42)

2 Jo

For a given value of the angular potential enefg¥gs.(40)

allow one to determine the angular part of the TAP solutions.
In general, for a given value of, Egs. (29 and (34)

determine the correlation function, the spherical parameter

And the Edwards-Anderson parametea unique way (Ex-

ceptions to this rule are the paramagnetic solutions, which,

H%Wever, do not correspond to afiy As a consequence, the

multiplicity of TAP solutions is entirely due to Eq40),
which, for certain values of, can admit an exponentigéin
N) number of solutionsV(&). The complexity as a function
of £ is then defined as

o(&)= lim %In[/\/(é’)], (43

N—oo

Thus there is a one-to-one correspondence betwgen
and&.

complexity has been computed by Crisanti and Somtiers
and Cavagneet al}* with the following result. There are

Of particular interest, as we shall show below, is thetypjcally no solutions foré<&eq, whereas foréeo<€

threshold solutiorf= &7y . In this case the equation fog
becomes

(p-1) ]
1= 22 (0)- BuealaRi”

(39

Note that this equation coincides with the one found with
the Matsubara formalism using the marginality condition to

fix the block sizex in the replica matri¥® Furthermore, it

<&ty the complexity reads

p) (8— VE2- &y,
—|-&24| —
2 V2&ry

+In(—E—\JE2—€2,)) for Egq<E<Ery,
(44)

2
1+ In

1
0'(5) = E

coincides with the equation for the dynamic value of thewhere&gq is the value at whiclr(€) vanishes. A plot of this

Edwards-Anderson parameterqEAEIimtﬂwlimtwﬂmC(t

function is traced in Fig. 2 fop=3.

+t,,,t,,) obtained from the study of the real-time dynamics
of the quantum model evolving in contact with an Ohmic
quantum environmerit, when one takes first the thermody-  In the classical case the TAP equations separate in two
namic limit, next the long-time limit of the system’s dynam- sets:N equations for the angular variables and one for the
ics in contact with the environment, and finally, the strengthEdwards-Anderson parameter. The former admit an expo-
of the coupling to the environment to zero. The relationshipnential number of solutions and are studied from a statistical
between the TAP, Matsubara, and dynamical approach wilpoint of view (one computes the number of solutions and the
be discussed in Sec. IV C. typical properties of the solutions corresponding to a given

3. A low-temperature and low" approximation
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0.015 . does not imply a loss of generaljty
Within this approximation the TAP equations become
| quadratic in Fourier space,
| 2
! Wi ~ p(p—1) _
0.01 | ! 1=\ 7 *2]Areclw) +— aBadred( @) =0,
~ : (47
= ! .
5 | and yield
0.005 | 1 SRR L J(z+ ofIT)2=2p(p—1)qE,’
| REG\Wk) = _ -
1 p(p—1)qa?
1 (48)
3 By taking w,=0 and comparing to Eq38) one obtains
0 ; ; : 1-pl2
-1.174 E, -1.166 -1.158 zq
0 . £=— EpA , (49)

FIG. 2. The complexityr(£) as a function of in the interval The spherical constraint reads
Egq<E<&ry for p=3.

1 ~ “do Bw
), whereas the latter can be easily solved. In the quantum 1_qEA:l§ z drec(@i) = fo — X' (w)coth —-1,
case the analysis of the equations for the angular variables is (50)
identical to the one used for classical systems. The analog of
the equation that determineg, becomes now a differential  Where
equation forC(7) that has to be studied numerically. This , ~
differential equation can be mapped exactly onto the ones X (0)=Imgreg(wk

analyzed with the replica method, as we shall show in Sec. 1-pi2 7 1-p2 2

(IV C), and its numerical solution can be found in Ref. 40. In = _iw):qEA \/5$H_<5+ &)

this section we perform a low-temperature and [Bvap- p—1 pI’

proximation, also discussed in Ref. 40, that allows one to (51)

obtain some qualitative results that remain valid for the exact ) ) )

solution. The integral in Eq.(50) has to be taken on the interval
At low temperature and low, the extension of the imagi- € [@_,w,] such that the square (oot is real. '

nary time interval divergef0,8— ] and the periodic cor- In the low-temperature limit, ~we approximate

relationC(r) is expected to have a rapid decay over a shorf0th(Bw/2)~1 and, by changing variables in the integral, we

time interval, from 1 to its “asymptotic” value, say, at  °Ptain
= B/2. Moreover, the “regular” part of the correlation, that 2(p—1)2
we define a& MEp=—"1—01-da’ai 2% (52
Ared(7)=C(7) —Qea (45 .
with
can be assumed to be small. Therefore we can expand the
TAP free energy in powers afgec(7). Up to terms of the I(E p)IZJV’Z’ZTH dxVEZ — (E+x2)2 —(E+x2)2. (53)
order ofgrec(7)° we obtain ' TEFE2 ™
BF 1 I 1 P20rea(T) Equation(51) yields a relation amond, g5, and€ of the
- W_ETr n[qREG( T)]‘FETI' T form
8 T12(€,p)=consi (1—dea)?qls 27 (54)
N i1<2<i Jig My with const a numerical constant. For eaglthere is a solu-
’ tion with a physically meaningful value @fg, that is close
p(p—1) to 1 until reaching a critical’y,ax(£). This value tells us

B
tB—3 qEAzfo d70Re(7) when the TAP solutions associated wiftdisappear. It can
be easily proven that(&,p) is a growing function ofé¢;
B hence,I is a decreasing function &. This implies
~ 52(0rec(0) +0ea—1), (40)  that the Ml'gxlgégolutions that arg at the threshold Ievzl disap-
pear more quickly than those that are at lower value§.of
where we have focused on the space of time translation inFhis is again similar to the dependence of the classical TAP
variant(TTI) functions(since the TAP solutions are TTI this solutions with temperatur¥: the solutions corresponding to
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@ 4. Stability of TAP states
Free energy| @ In the classical case one can check the stability of TAP
/ ® states. In the quantum case this is a difficult task that has to
be performed numerically. In the following we shall limit
i L / ourselves to prove that the TAP solutions characterized by
A E=Ery (threshold statgsare characterized by zero modes
and are hence marginally stable. We expect that a complete
En stability analysis will confirm that the TAP states character-

ized by £E< &y are stable.
Let us focus on the reduced free-energy Hessian
E, aZF/ami(T)amj(r’) evaluated in a TAP solutiofm;*}. This
matrix depends om, 7" only through their difference. There-
fore it is diagonal in Fourier space. Focusing on zero fre-
r quency, the original problem reduces to the diagonalization
of the following matrix:

Iy T

FIG. 3. TAP free-energy versuk at zero temperature. The
curve (1) corresponds to threshold states which are the first ones to Ai'j =— 2 Ji
disappear af'1,; the curve(3) corresponds to the states with the ig<---<ip
lowest free-energy which are the last ones to disappeligas and (58

the curve(2) corresponds to an intermediate state.

N mio;— pngliilfsi,j s

where gea=2i(m*)%/N. The density of eigenvalues &
] has been computed in Ref. 54 and, except for the
the threshold level disappear at a lower temperature than theg|ateq eigenvalue corresponding to the eigenveatbr it
ones corresponding to the equilibrium levélax(&rn) is a semicircular law centered ir p&gR’2-! with width

=Tuax(eq) and, more generallylyax(£1) <Twax(&2) it pErual? 1. Consequently, threshold states are character-

b>&. . .. ized by a vanishing fraction of zero modes
The low-frequency behavior of the spectral density '

X" (®)=Imgrec(wx=—iw) of the threshold states is gap- 5. The classical limit

less,

The classical limit of Eqs(29) and (30) yields the classi-
cal TAP equations computed by Kurchanal? In fact, in
the classical limitC(7) =1, and the parameteris fixed by
integrating Eq.(29) between 0 and 3*. This yields

X'(0)~ow for «—0", (55

whereas all the other state§<(&1) have a gap\ in their
excitation spectrum, 1 B

p
z=———+—(1—-g"" Y. (59
1- 2
(@) ~o—A for @A (56) Al-a)
By inserting this value of in Eq. (30) we obtain
Furthermore we have studied the dependence of the free 1 (p-1)8
energy or€ andI" in the low-temperature limit. Plugging the + p{p (1—q)gP 2| m;
solution (48) into Eq. (46) we find, after a tedious computa- B(1-q) 2
tion,
:p y . ‘]I,i2 ..... ipmiz...mip, (60)
BF do .| Bw , 2= =l
_W:_fﬁln 2 sinff == |ox"(w) which coincides with the classical TAP equations for the

local magnetizations. The equation that fixgs, as a func-
tion of £ in the classical limit is simply obtained from Eq.

(34) by settingC(0)=1.

+

p/2
,BQEA< p ) g 57)

_2_ -
2 P Jea

whereqg, satisfies Eq(38). This expression allows one to ¢ Relation among TAP, Matsubara, and dynamic approaches
study the evolution of the free energy of the TAP states as a

function of . We have found that if one knows a TAP In Sec. Il we have recalled the relationship among TAP,

solution at zero temperature and zdfoone can follow it replica, and.dynamical approaches in the cllassical case. In
continuously inl". As in the classical case, TAP solutions do f[h|s subsection we show how these connections are general-
not cross, merge, nor divide in this model. ized to quantum systems.

Figure 3 summarizes these results in a schematic way.

Finally, note the special role of the threshold states, which
are gaplesgcontrary to the othejsthe first ones to disappear ~ Via the replica analysis in the Matsubara imaginary-time
and the ones with highest free-energy density. framework and within a one-step RSB ansatz, the order pa-

1. TAP and Matsubara approaches
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rameter is thexXn matrix Q,p, Which is fully described by 2. TAP-out of equilibrium dynamics

n identical _diagonalzelementqd(r) that depend on the  Tne study of the real-time dynamics of the p-spin quan-
imaginary timer, n(x“—1) constant elementge, that 0c-  tym model evolving in contact with an Ohmic quantum en-
cupy theéxxx blocks around the diagonal, and the remainingyjronment has been performed in Ref. 39. The dynamical
n“—n(x“—1) elements), that in the absence of an extemnal penavior is characterized by two regimes. At high tempera-
field are identically zero. In the—0 I|r_n|t, the three param-  {,re and high' the system equilibrates in the paramagnetic
eters qq(7), dea and x, together with the value of the state via an equilibrium dynamics, whereas at low tempera-
Lagrange multiplier that enforces the averaged spherical cofiyre and lowI” the systems ages and remains out of equilib-
straint, determine the full solution of the probléfh. rium also at infinite times. As in the classical case we have
The connection between the TAP and Matsubara apfound that the long-time out-of-equilibrium dynamics is
proaches is obtained by identifying the Edwards-Andersoyominated by the threshold states. This is proven by the fact
parametersqe, in the two approachesC(7) with the  that the equations foge, and C(7) within the TAP ap-
7-dependent diagonal parametgg(7) in Qap, and the  proach coincide with the ones obtained from the study of the
Lagrange multipliers. In particular we have shown that byrea|-time dynamics, when the following limits are taken in
subtracting the equation obtained ¥ b from the equation precise order: lim_olim,_..limy_... In order words, when
corresponding t@=b, one obtains Eq29). In the Matsub-  one takes first the thermodynamic limit, next the long-time
ara approach one has another equationgfg in which X jimit of the system’s dynamics in contact with the environ-
acts as an external parameter. Therefore by fixing the valugent and, finally, the limit as the strength of the coupling to
of the break point one fixes the value Q5. As in the  the environmenty goes to zero. Notice that this equivalence
classical case two different methods to fix the breaking poinholds for the paramagnetic states also. Finally, we have
parameter, namely, optimization and the marginality con- shown that the relationship between the effective
dition, lead to the static and dynamic transitions, respectemperaturé arising in the asymptotic out-of-equilibrium

tively. In the TAP approach the role of is played by&,  regimé® and the complexity is, classically,
which enters the equation fajz, as a parameter. We have

found that the relationship betwearand £ is encoded in 1 odo(B.f) 64)
Terr ot |
px= 27 B0 (61 N
X=—,
ot Note that the connection between TAP and real-time dy-

namics is done by identification of several equations. A more

whereo is the complexity defined in Eq5); see Appendix  hrecise analysis, along the lines of Ref. 25, should prove the
B. This suggests that in a quantum problem the relationshig equivalence of the two methods.

(8) is generalized to

1 V. DISCUSSION

_N“m BN za: e ANl In this section we present some general arguments that
o allow one to recover the phase diagram of the quantum

1 sphericabp spin-glass model. Since the free-energy landscape

=—lim —In f dfeN(=AxtTo(Bn) plays a key role, we expect these results to have a certain

N AN degree of universality and to apply to a large number of
:XEXtrqEA,qd(r)fREP(qEA’qd(T);Xrﬁir)- (62) discontinuous glassy systems.

Using Eq.(61) we have found that the Matsubara equations A. The static transition

for gea andqgq(7) and the TAP equations farg, andC(7) Let us focus on two limiting regions of the phase diagram:
coincide. For instance, the TAP equations for the higheshround the classical phase transitidh=0) and around the
TAP StateqthreShC)ld Statésand the lowest TAP states co- guantum phase transitiorﬂ'% 0) In the former case the
incide with the ones obtained in the Matsubara approach byhysics is well known and it is reviewed in Sec. Il. The
using the marginality condition and the extremization witheffect of switching on weak quantum fluctuations consists
respect ta, respectively. Moreover, as another confirmationonly of a weak variation of the complexity. For this reason

of Eq. (62) we have verified that the free energy obtainedihe effect of quantum fluctuations reduces simply to a varia-
from the Matsubara computatiftequals the one obtained in tion of the thermodynamic T) and the dynamic Ty)

the TAP approach for all values ¢@f andI'. In other words,  transition temperaturegrespectively, lines (1) and (3)
we have checked that in Fig. 4].

At zero temperature and loW the system is in the glassy
phase(GP), whereas at very high" quantum fluctuations
destroy the glassy phase and the system is a quantum para-
magnet(QPM). As a consequence one expects that a quan-
As a consequence the phase diagram that follows from theuim phase transition should divide these two regimes at a
TAP approach coincides with the one obtained in Ref. 40. certain valuel’s.

—BF=1n>, e FFa, (63)
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r o) temperature regime. In the quantum case, one also expects to
find a spurious paramagnetic solution, which is the continu-
ation of the classical paramagnet to low temperatures. This
solution exists to the left of line (1) in Fig. 4, consequently
one expects coexistence of two paramagnetic solutions: a
physical one, which is the continuation of the quantum para-
magnet valid at low temperatures and highand a spurious
one, which is the continuation of the classical paramagnet.

In the classical case the transition is of second order even
if the order parameter jumps discontinuously. This peculiar
behavior is due to the fact that near the transition the para-
magnetic state is fractured into an exponential number of
states that continuously become the ones responsible for the

CPM glassy phase at low temperature. This is not possible at zero

temperature(the quantum paramagnet is not formed by a

collection of glassy statg@nd therefore it is reasonable to

expect a quantum first-order phase transition between the

FIG. 4. A schematic representation of the phase diagram that i§!SS phase and the quantum paramatfhet. .
expected to be generic for systems having a discontinuous transition Finally, note thatopy=Fgp=Fcpy 0N the pointB. We
in the classical limit. Line(1), from (T4,0) to pointB, represents then expect that a first-order transition line separating the
the static transition between the classical parama¢@eM) and ~ QPM from the CPM starts at this point. This line should end
the glassy phaséGP). The region in the shaded area between lineson a pointC given that for very large values @f andT the
(1) and (3) is the phase in which the CPM is fractured into anquantum and thermal fluctuations are so strong that the sys-
exponential number of TAP states. Lif® from pointB to (I';,0)  tem becomes noninteracting and, in this case, only one para-
signals the static transition between the quantum paramagnehagnetic phase exists. This line has been found in all quan-
(QPM) and the GP. Line (3) indicates the dynamic transifigras ~ tum extensions of the spin-glass. Furthermore, within the
a function ofI". accuracy of the algorithm, the dynamic and static critical

lines collapse at poinB. In the quantum model studied in

At zero temperature the complexity is expected to remairRef. 38 this line has been detected and it was demonstrated
a smooth function of the free-energy densftyConse- in this paper that its length increases with
quently, Eq.(4) implies that the sum over the exponential
number of glassy states is always dominated by the lowest B. The dynamic transition
states in free energy since thf term in the exponential
largely dominates in this limigthis is different from the clas-
sical problem in which other states dominate betw&gand
Tg)- At zero temperature these are the states with lower a
gular potential energy, i.e., with=E&go. Now, from Fig. 2
we conclude thatr(&gq) =0 at zero temperature and for all

Ts Td

Now that the equilibrium phase diagram is completely
predicted from a qualitative point of view, we can focus on
the nonequilibrium regime. As noted previously, low quan-
"um fluctuations simply change the valuesTof but do not
change qualitatively the dynamic transition, which remains

I'. For this reason the mechanism behind the transition mug econd order in the sense that the asymptotic energy is con-

: . " uous across the transition, but its derivative is not. This
be totally different from the classical one. The transition Ccan-omains true until the line (2) reaches the IBE. After this
not be related foa conflguratlo?al entropy .th,","t \./amShe?)oint the dynamic transition between the quantum paramag-
when approachind’ from above(“entropy crisis”) since

this quantity is always zero at zero temperaiisee also Ref net and the threshold states becomes first order, i.e., the
59) q y y P * asymptotic energy is not continuous across the transition.

Indeed, according to Eq(61), if we assume that This, of course, is very difficult to see numerically since the

0B, )13f < +0 whenT—0, thenx—0 for all T in the ~ iocontinuity has a very small value.
glassy phase. In the paramagnetic phase insteatl. Thus,
x must jump at the transition. If the Edwards-Anderson pa- C. Summary
rameter also jumps at, the susceptibility is discontinuous, In summary, through some general arguments based on
and the transition is of first order thermodynamically. As inthe TAP approach we have predicted a phase diagram that
the previous case the effect of switching on thermal fluctuashould apply to a large number of discontinuous quantum
tions reduces simply, for low, to a variation ofl s [line (2)  glassy systems since its form is determined by the qualitative
in Fig. 4]. form of the free-energy landscape. Indeed, not only the quan-
Another clue to the difference between the classical andum p-spin spherical model exhibits the phase diagram dis-
quantum phase transition can be perceived by a technicglayed in Fig. 4, but some other classical and quantum mod-
remark. It is well known that the paramagnetic solution ofels share exactly the organization of phases and
the classical problem remains stable in the low-temperaturgransitionst®*”-*84°Note, however, that other scenarios are
phase. This is a spurious solution of the mean-field equapossible. For instance, Ritottstudied the phase diagram of
tions, which has to be discarded in the analysis of the lowthe random orthogonal mod&lin a transverse field within
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the static approximation and found that at zero temperaturstates is by studying the dynamics of this system starting
the phase transition remains of second order in the thermdrom particular initial conditions as done in Refs. 52 and 53
dynamic sense. Within the free-energy landscape analysfsr the classical model. This study is undervfay.

developed before this suggests that, in the model studied in

Ref. 59, the number of glassy states diminishes when- ACKNOWLEDGMENTS
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of the sphericalp-spin model. The study of this system,

whose real-time dynamics and statics have been analyzed in APPENDIX A

Refs. 39 and 40, has furnished an ideal benchmark to gener-

alize to the quantum case several concepts developed for In this appendix we show that the equation tpr, that

classical disordered systems. Armed with this knowledgeleads to a solution with the correct physical properties is Eq.

founded on the study of the free-energy landscape, we hau@4) with the minus sign. Indeed, we search for a solution

shown that the same phase diagram, presented in Fig. that corresponds to a minimum of the TAP free energy. The

naturally emerges in a large class of quantum disordered sy#:ll stability analysis, which involves the evaluation of the

tems, those having a classical discontinuous transition. complete Hessian of the TAP free energy, is rather difficult
Whether other models like the SK model in a transverseand has to be done numericallfor instance, the form of

field or its soft spin version studied in Ref. 42 also have suclt(w) can only be obtained numerically

crossover in the transition from the disordered to the ordered However, we can still perform a partial analysis that suf-

phase is an issue that deserves scrutiny. For the moment, figes to justify the choice of the minus sign. Let us concen-

study of models with a classical continuous transition hagrate on the following diagonal elements of the Hessian:

shown this feature. However, it might have been masked by

the methods used in previous studies. The soft SK model §(— 8F)

might be the easiest example with which to answer thisequa- —_ 2  —

tion via, e.g., a careful application of the replicated Matsub-

ara approach? 1 o(p—1)
We would like to stress that the TAP approach furnishes X| — — qg/g3

an alternative and more transparent route to replicas, which (C(0)~ Bden)*dea 2

also has the advantage of showing explicitly the weakness of (A1)

the mean-field description. Let us cite one example. The

marginality prescription in the replica approach becomes a a(— BF) -1 p(p—1) (8

more transparent statement in which the nonequilibrium dy- — = =— drCP~2(7).

namics is dominated by the TAP states that are marginally ?C(0)dC(0) [C(0)—qB]? 28 Jo

stable, i.e., the flatness of the free-energy landscape around (A2)

these states is responsible for aging. Concerning one of therom thez.. definition we find

weaknesses of the mean-field description we would like to -

emphasize that the enormous number of pure statéh _ N - A

different free-energy densitipfound for mean-field models Z-= p—1° Z+= p—1"

cannot persist in finite dimensions and the majority of them_. L

should becomemetastablestates. How this changes the S_mce deA |s.f|xed by Eq.(3_4), thg _second fgctor on the

ight-hand side of Eq(Al) is positive (negative for z_

mean-field scenario is an active domain of research for clag: - .
sical system§&? (z,). A stable solution corresponds to a negative value of

We remark that interesting continuations of our work con-EdS-(A1) and(A2); therefore one has to take the solutigh

cern, on the one hand, the application of the TAP approacfP Z- andq’ for z, . Moreover, since fo€<&ry the right-
to different quantum mean-field mod&s$*3°and, on the hand side of Eq(34) is positive, then we obtain thal(0)
other hand, the generalization of the static quantum TAP- Bq’ andC(0)—3q" are positive, and using that
approach to real-time dynamidfor classical systems this

has been done in Ref. 25This would allow one to show the 1 JBC“(t)dt - 1 JBC(t)dt ‘ a>1
relationship between long-time dynamics and free-energy B Jo - 0 '

landscape for quantum systems directly. Finally, the precise | . . . _
definition of a “quantum state” is a delicate matter and mer—and imposing that EqA2) has to be negative, we obtain

. (1 p)6<0>+ D 8
Y — 5 A EA
5q§A 2 2 2

(A3)

its further analysis. In this paper we have simply called a 1 p(p—1)
“state” the minimum of the TAP free-energy density. One — - q2.?=0 for q=q',q".
possible way to verify the existence and stability of these [C(0)— Bdgal?® 2
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But this is impossible foz, , i.e., it is not possible to have a

do  do d& do _
. + . — p/2
consistent stable™ solution.

PX= 5 g ot e A

The derivativedo/ d€ can be easily computed from E@4).
One arrives at

(B1)

APPENDIX B

In this appendix we give an argument in favor of the g:[C(O)Z_BZQEA(X_ 1)+ BeaC(0)(x—2)]7%.
relation Bx=do(B,f)/df in Eq.(61). Let us start by assum- (B2)
ing that it does hold and see that it leads to the equation . .
linking X, gga, andC(7) in the Matsubara approach. First of In summary, starting from the TAP approach at fixeve

all we write the derivative of with respect td as a deriva-
tive with respect ta. This can be easily done by noticing

that differentiatingf in Eq. (13) with respect ta€ at 8 andI’
fixed is equivalent to differentiating with respect tof at
B,I',gea, andC(7) fixed becausé is stationary ingqg, and
C(7). As a consequence we find

obtaingg, andC( 7). Assuming then that Eq61) holds we
obtain the equation linkingiza andx in the Matsubara ap-
proach. The equations f&(7) in the TAP and Matsubara
approaches, onog: 4 is fixed, are identical. Hence we have
proven that Eq(61) leads to the Matsubara results in Ref.
40. The proof will be complete if we showed the other sense
of the implication.
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