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Out-of-equilibrium dynamics of a quantum Heisenberg spin glass
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We study the out-of-equilibrium dynamics of the infinite range quantum Heisenberg spin glass model
coupled to a thermal relaxation bath. TheSU(2) spin algebra is generalized toSU(N) and we analyze the
large-N limit. The model displays a dynamical phase transition between a paramagnetic and a glassy phase. In
the latter, the system remains out-of-equilibrium and displays an aging phenomenon, which we characterize
using both analytical and numerical methods. In the aging regime, the quantum fluctuation-dissipation relation
is violated and replaced over a very long time by its classical generalization, as in models involving simple spin
algebras studied previously. We also discuss the effect of a finite coupling to the relaxation baths and their
possible forms. This work completes and justifies previous studies on this model using a static approach.
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I. INTRODUCTION

The study of the nonequilibrium dynamics of classic
glassy systems has been the subject of an intense resea
the last decade. Much progress has been made1 using scaling
arguments, phenomenological approaches, and mean
theory. One of the major achievements is the theoretical
planation of the aging phenomena, which is one of the m
striking features of glassy systems. Analysis of the out-
equilibrium of ~classical! mean-field spin glasses has play
a major role for several reasons. It has furnished a fra
work to understand, interpret, and analyze the experime
results and it has given important predictions on the violat
and generalization of the fluctuation-dissipation relat
out-of-equilibrium2 which has been experimentally teste
recently.3

Usually, many glassy systems can be analyzed withi
classical approach since they are characterized by trans
temperatures at which quantum mechanical effects are
relevant. Nevertheless, there are also interesting case
which the critical temperature can be lowered to zero
tuning a parameter which controls the strength of quan
fluctuations. This gives rise to a quantum critical point
zero temperature.4 Close to this point, the quantum fluctua
tions are very important and cannot be neglected. One
ample which has received much attention recently is the
sulating magnetic compound LiHoxY12xF4 which is an
experimental realization of an Ising spin glass in a transve
field.5 Other systems where glassy properties in the prese
of quantum fluctuations have been observed are mi
hydrogen-bonded ferro-antiferro electric crystals,6 interact-
ing electron systems,7 cuprates like La22xSrxCuO4,8 and
amorphous insulators.9

The theoretical study of quantum glassy systems has b
performed following two different and complementa
routes. One-dimensional models~like the Random Trans
verse Ising spin chain! have been extensively studied and
has been shown that the Griffiths-McCoy singularities
very important close to the quantum critical point.10 On the
other hand, after the work of Bray and Moore11 much atten-
tion was focused on infinite dimensional~mean-field!
models.12–26 In particular, recently, it was shown27 that for
0163-1829/2002/65~9!/094414~15!/$20.00 65 0944
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the quantum spherical p-spin glass model the quantum fl
tuations drive the transition toward afirst order quantum
phase transition at low temperature. The same phenome
has been observed experimentally for the insulating magn
compound LiHoxY12xF4.5 In Ref. 28 it was argued that thi
phenomenon is to be expected in a large class of system

In contrast, the study of real time out-of-equilibrium d
namics of quantum glassy system is a recent subject and
very few results are available at the time of this writing. In
first pioneering paper, Cugliandolo and Lozano25 presented a
detailed solution of a quantum version of thep-spin model.
They showed how the out of equilibrium behavior of clas
cal glassy systems is affected by quantum fluctuations
particular they found that the low temperature glassy phas
characterized by the aging phenomenon. In this regime,
fluctuation-dissipation relation is violated and is generaliz
to a form that coincides with the~generalized! classical one.
This could seem natural since at low frequency the quan
fluctuation relation coincides with its\→0 limit ~for a
bosonic system!. Indeed it has been shown in Refs. 29,
that for models with simple commutation relations~particles
and rotors!, the classical nature of the generalize
fluctuation-dissipation relation is due to the fact the dynam
cal equations are fixed point of the re-parametrization gro
of time transformations and therenormalizedaging dynam-
ics becomes classical at the fixed point. The quantum
chanics enters only as a renormalization of the coefficient
the dynamical equations.

However what happens for models with a nontrivial sp
algebras, as theSU(N) model studied in Refs. 22, 21, re
mained an open question. The study of the out-
equilibrium dynamics of this type of quantum glassy syste
is the main aim of this paper. We will focus on the quantu
Heisenberg spin glass where theSU(2) spin symmetry
group is replaced bySU(N) and take the largeN-limit. In
this model, the spin are true quantum spins, i.e., with n
trivial commutation relations, and this introduces in the pro
lem Berry phases which play an important role.4 Recently a
detailed mean-field solution using an equilibrium approa
has been presented in Refs. 22, 21. The model displa
second order phase transition at a temperatureTeq between a
paramagnetic phase and a spin glass phase, and it is so
©2002 The American Physical Society14-1
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GIULIO BIROLI AND OLIVIER PARCOLLET PHYSICAL REVIEW B 65 094414
by a one-step replica symmetry breaking scheme. Moreo
using a procedure called ‘‘the marginality condition,’’ th
existence of a dynamical transition has been predicted
temperatureTd.Teq. First introduced and discussed in th
quantum case in Ref. 18, this prescription was used in R
22, 21 since it led to the most acceptable solutions. Rece
the TAP approach has been fully generalized to quan
systems.28 The relationship between TAP and replica a
proaches gives a further hint on why one has to choose
marginal solution in the replica method. In fact this soluti
is related to the marginally stable TAP states which ha
some flat directions around them in the~quantum! free en-
ergy landscape, contrary to all the others which are co
pletely stable. Assuming that the quantum out of equilibriu
dynamics is dominated by the presence of flat directi
around the marginally stable TAP states, as it happens in
classical case, one finds a more natural justification of ‘‘
marginality condition.’’ However, only a complete dynamic
analysis can fully justify this procedure. The analysis p
formed in this paper of the real time out of equilibrium d
namics, using the Schwinger-Keldysh closed tim
formalism,31,32 indeed shows its correctness.

This paper is organized as follows: in Sec. II, we pres
the model and the relaxation bath coupled to it. In Sec.
we present the dynamical large-N equations for the retarde
and Keldysh correlation functions and we explain th
derivation and how to deduce them from the simp
imaginary time equations. In Sec. IV, we present both
analytical and a numerical analysis of the dynami
equations. Numerical evidence for aging and for a gene
ized fluctuation-dissipation theorem in the aging regi
are presented. Moreover the analysis of the aging reg
justify the ‘‘marginality condition’’ used in previous
works.21,22 Finally, in Sec. V, we briefly discuss the effect o
a finite coupling to the relaxation bath.

II. THE HEISENBERG SPIN GLASS
AND THE RELAXATION BATH

The model considered in this paper is a quantum Heis
berg spin glass on a completely connected lattice ofN sites
with quenched disordered couplingsJi j /ANN which are in-
dependent random Gaussian variable of zero mean a
varianceJi j

2 /(NN)5JH
2 /(NN). Each spin is linearly coupled

to a thermal bath. Moreover, we generalize theSU(2) spin
symmetry group toSU(N) and we take the largeN-limit.
This generalization allows us to obtain a tractable mo
which still has highly nontrivial quantum effects and repr
duces qualitatively well the known results for theSU(2)
model, as far as it has been possible to compare theN52
and theN5` cases.21,22,19The Hamiltonian reads:

H5
1

ANN
(
i , j

Ji j SW i•SW j1
JB

NAg
(
ia

SW i•sW ia1HBath~sW !,

~1!

where the scaling of the spin–spin couplings and the anti
romagnetic spin-bath coupling has been chosen in suc
way to obtain a sensible largeN, N limit, i.e., JH

2 ,JB
09441
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}O(1). The first term is the Quantum Heisenberg spin gl
Hamiltonian, the third and the second terms represent,
spectively, the thermal bath of spinssW i and its coupling to the
spinsSW i via the coupling constantJB . Let us now discuss
them separately.

Among the possible representation of theSU(N) spin,
two versions have been studied:21,22 the bosonic model, in
which the spin operatorS is represented using constraine
Schwinger bosonsb by

Sab5ba
†bb2Sdab , ~2a!

(
a51

N

ba
†ba5SN, ~2b!

and the fermionic model, in which the spin operatorS is
represented similarly using Abrikosov fermionsf by Sab

5 f a
† f b2Sdab , with the constraint(a f a

† f a5SN (0<S
<1). See Ref. 33 for an introduction to this two represen
tions. The two models are technically very similar but the
is an important physical difference between them: in the f
mionic model, quantum fluctuations are so strong in
large-N limit that the spin glass ordering is destroyed34 ~the
critical temperature vanishes whenN diverges22!, whereas in
the bosonic model, a spin glass phase exists at
temperature.21,22 In the following we will focus mainly on
the latter one and we briefly discuss some results for
former one at the end of Sec. IV. In the model we study,
sizeSof the spin is a fixed, tunable parameter which contr
the strength of quantum fluctuations~sinceN5` it is more-
over continuous!. Let us emphasize that theN→` limit is
not the classical limit: as shown in Refs. 21, 22, the mode
classical for largeS~but not a very low temperature!, while it
is ‘‘more quantum’’~i.e., the quantum fluctuations are mo
important! at low S and displays a quantum critical point a
S50 where the spin glass temperature vanishes.

Moreover, it is important to remark that the real physic
object is the spinS, not to the bosonb or the fermionf which
should be considered here more as mathematical tools. T
nically, this leads to a simpleU(1) gauge invariance of the
bosonic or fermionic theory~we can always multiply theb or
the f by a phase! whose consequences will be explained lat

Let us now discuss the role of the relaxation bath terms
Eq. ~1!. Its presence is necessary to allow the energy di
pation. It guarantees the relaxation toward equilibrium abo
the dynamical transitionTd and it is required to obtain an
aging regime belowTd . In this paper, we are mostly inter
ested in theJB→0 limit, which must always be takenafter
the long time limit: for example, the dependance of the eq
librium state inJB is expected to be smooth in this limi
although the transient time toward the equilibrium diverg
The bath we have considered in Eq.~1! is supposed, as usua
to be very big and always in equilibrium at a finite tempe
ture T51/b. For further simplification we take independe
baths from site to site~labeled byi ), and the spinssW i carry an
additional degree of freedoma, with 1<a<Ng ~whereg is
a constant!, which ensures that the bath is much bigger th
the spins to which it is coupled. Moreover, we will make t
4-2
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OUT-OF-EQUILIBRIUM DYNAMICS OF A QUANTUM . . . PHYSICAL REVIEW B65 094414
assumption of factorized initial condition.35 By this we mean
that the initial density matrix is a product of an equilibriu
density matrix for the bath and an initial density matrix f
the system. Sinceb ~or f ) is not the physical object, the bat
should respect theU(1) invariance, i.e., it must couple t
two b’s and we do not consider baths coupling linearly tob
in this paper. Of course many different choices are possi
We first consider a ‘‘generic’’ bathHbath(sW) of interacting
spins sW and expand the Keldysh effective action forS at
second order in the coupling constantJB ~the first order van-
ishes!. In the dynamics, the bath will then appear on
through its susceptibilityx0 ~see Sec. III!. This approach is
appropriate when we only consider the bath as a devic
provide thermalization. One could wonder how correct is
study a low temperature glassy phase using a perturba
treatment of the coupling to the environmental heat bath
Sec. V we will show that this is not a limitation and we w
briefly discuss the simplest type of spin bath which will tur
out to be a Kondo bath.

III. THE DYNAMICAL EQUATIONS

In order to study the real time dynamics, we use
Keldysh method:31 the time evolution operator is written as
path integral over 2 timest1 and t2 , running from 0 to
infinity forward and backward, respectively. In the classi
limit, this method reduces to the Martin-Siggia-Ros
DeDominicis-Janssen formalism~see Appendix C of Ref.
25!. We take an infinite temperature initial condition att
50 and do a instantaneous quench to temperatureT. This
means that the initial density matrix for the system is sim
the identity operator. As a consequence the initial den
matrix, which is a product of the equilibrium density matr
of the bath and the infinite temperature density matrix of
system, does not depend on the disordered couplings. Th
fore, as in the classical case, there is no need to introd
replicas to compute disorder-averaged quantities.

The quantities we want to compute are the averaged
sponse and correlation of the spin, which are defined as~the
spins are on the same site!:

RS~ t,t8![
i

N2
u~ t2t8!^SW ~ t !•SW ~ t8!2SW ~ t8!•SW ~ t !&

5
i

N2 (
ab

u~ t2t8!^@Sab~ t !,Sba~ t8!#&,

CS~ t,t8![
1

2N2
^SW ~ t !•SW ~ t8!1SW ~ t8!•SW ~ t !&

5
1

2N2 (
ab

^Sab~ t !Sba~ t8!1Sab~ t8!Sba~ t !&,

~3!

where the bar denotes the average over disorder and
brackets denote the ‘‘Keldysh average,’’ i.e., the Hamilton
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evolution of the quantity starting from the initial condition
t50. Moreover, in this paper, we take\51.

In the following, we first derive the Keldysh action, w
average over disorder and we take the large-N limit; then we
recall the so-called ‘‘Larkin-Ovchinnikov representation
and we express the dynamical large-N equations in their final
form using the retarded and Keldysh functions of the bos
R and K from which one can obtainRS and CS . It is not
possible to obtain tractable equations for the physical qu
tities RS and CS directly, contrary to rotors30 or p-spins25

models, and that makes the problem more complicated.21,22

We start using a Keldysh action defined on the dou
contour:

S5SB
12SB

22 i (
a51,2

aE
0

`

dtF (
^ i , j &

Ji j

ANN
SW i

a~ t !•SW j
a~ t !

1
JB

NAg
(
ia

SW i
a~ t !•sW ia

a ~ t !1Hbath~sW i
a~ t !!G . ~4!

In this expression,a56 denotes the upper/lower contou
SB

6 are the Berry phase on the upper and lower contour36

After the average over the disorder we take a saddle p
over the number of sitesN. Hence, we get a self-consiste
problem @some scalar products have been explicitly writt
with SU(N) indices for clarity#:

Se5SB
12SB

22 (
a,b51,2

abE E
0

`

dt dt8
JH

2

2N (
abgd

Sab
a Sgd

b ~ t8!

3^Sba
a ~ t !Sdg

b ~ t8!&Se

2 i (
a51,2

aE
0

`

dt
JB

NAg
S (

a
SW a~ t !•sWa

a~ t !

1Hbath~sWa~ t !! D , ~5!

where^•&Se
means the average over the single site action

~5!.
At this stage, it is useful to define the spin correlati

functions in the so-called ‘‘6 representation:’’

xab
S ~ t,t8![

1

N2
^T SW a~ t !•SW b~ t8!&S5

1

N2 (
ab

^T Sab
a ~ t !Sba

b &S ,

~6!

xab
0 ~ t,t8![

1

N2
^T sWa~ t !•sWb~ t8!&Bath , ~7!

where a,b56 are the contour indices, andT is the time
ordering on the double contour,^•&Bath denotes the averag
with respect to the bath. Now, explicitly using theSU(N)
invariance of the theory, integrating out the bath, and
panding to second order inJB , we get an action only for the
spins~summation overa andb is implicit!:
4-3
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S5SB
12SB

22
1

2N (
a,b

abE E
0

`

dt dt8Sab
a ~ t !Sba

b ~ t8!

3~JH
2 xab

S ~ t,t8!1JB
2xab

0 ~ t,t8!!. ~8!

Until now, the derivation is correct for any value ofN and
in particular forN52. The great technical advantage of t
large-N limit becomes manifest if one considers in detail t
self-consistent single-site problem. In fact, because of
presence of the Berry phase, the single-site measure de
by the action Eq.~8! is far from being simple. Indeed th
single-site functional integral cannot be performed and a
consequence it is not possible to obtain a closed equation
the spin–spin correlation function. The large-N limit simpli-
fies the single-site measure and gives a set of closed equ
on the two-point functions. Using the Schwinger bosons,
Berry phase contribution to Eq.~8! reads:

SB52(
a,a

aE
0

`

dtba
a† ] tba

a , ~9!

while the other part of the action can be obtained sim
replacingSab

a with its expression in terms of bosons. For
finite N the problems remains still very complicated sin
one has to integrate only on bosonic fields respecting
constraint Eq.~2b!. Whereas in the large-N limit, which we
shall study in the following, the sum(aba

†ba /N does not
fluctuate and this greatly simplifies the analysis. In particu
we can obtain the saddle point equations on the bos
Green functions, which in the6 representation are define
as:

Gab~ t,t8![2 i ^T ba~ t !bb
†~ t8!&S . ~10!

The computation can be done explicitly, using the same
coupling as in the imaginary time equilibrium computatio
as explained in Ref. 22. Here we present a faster derivat
noting that the same diagrams for the self-energy derive
the imaginary time computation appears in the Keldysh f
malism: a first diagram, corresponding to the spin glass
teraction itself, and a second one, corresponding to the
pling to the relaxation bath~see Fig. 1!. Thus using Feynman
rules in the6 representation, we find immediately~the fac-
tors can be checked against Matsubara computations:
Appendix A!:

FIG. 1. Feynman diagrams for the self-energy: the solid line
the bosonic Green function, the dashed lines represents thex0 of
the bath~we take a product of two fermionic functions, see text!.
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We see that the bath only enters though its susceptib
x0. For simplification, in the following, we take a specifi
form for the susceptibility of the bathxab

0 (t,t8)
5Gab

0 (t,t8)Gba
0 (t8,t), where G0 is the Green function of

free fermions with a Lorentzian density of states at half fi
ing ~see Sec. IV for a discussion on the relaxation bath an
justification of this formula!.

To simplify the analysis of the dynamical equations, it
useful to write them in a different way, using the so-call
‘‘Larkin-Ovchinnikov representation’’~LO! of the equations,
in which the~matrix! Green function is given by

G5
1

2 S 1 1

1 21D S G11 G12

G21 G22
D S 1 1

21 1D 5S R K

0 AD ,

~12!

where the retarded~response!, advanced and Keldysh~corre-
lation! two-times Green functions are defined by:

R~ t,t8![2 iu~ t2t8!^@b~ t !,b†~ t8!#&

5G11~ t,t8!2G12~ t,t8!, ~13a!

A~ t,t8![1 iu~ t82t !^@b~ t !,b†~ t8!#&

5G11~ t,t8!2G21~ t,t8!, ~13b!

K~ t,t8![2 i ^$b~ t !,b†~ t8!%&5G11~ t,t8!1G22~ t,t8!.
~13c!

Note that our convention forR differs from the one used fo
RS . Moreover, we will use the relations:

A~ t,t8!5R~ t8,t !* , ~14!

K~ t,t8!52K~ t8,t !* ~15!

to eliminateA and restrict ourselves tot.t8. The ~LO! rep-
resentation is simpler because it uses the relationG11

1G225G211G12 to reduce the number of function
~just R andK) after thatA is eliminated using Eq.~14! and
because it makes the causality of the equations explicit
the ~LO! representation the Keldysh indices structure of
vertices are particularly simple: the two-leg vertex isdab ,32

which leads to a simple Dyson equationG215G0
212S

~where the inverse are just matricial inverses!, and the four-
leg vertex used in Eq.~11! is (1^ sx1sx^ 1)/2, where 1 is
the 232 identity matrix andsx is the usual Pauli matrix.
Remarkably, this vertex factor is fully symmetric in th
Keldysh space. Hence, a quick way to switch to the~LO!
representation is to recompute the Feynman diagrams~see

s

4-4



te
in

m

r

ry
re

e

se

m

of
the
a

ew

r as-
the
d
can

at

in
try;

n

OUT-OF-EQUILIBRIUM DYNAMICS OF A QUANTUM . . . PHYSICAL REVIEW B65 094414
Fig. 1! with the ~LO! Feynman rules~although a direct com-
putation using just the definitions is possible but more
dious!. After these manipulations, we finally obtain the ma
equations of our paper~for t.t8):

•The Dyson equations@Eq. ~16c! is rewritten to involve
only functions fort.t8#:

i ] tR~ t,t8!5d~ t2t8!1E
t8

t

du SR~ t,u!R~u,t8!, ~16a!

i ] tK~ t,t8!5E
0

t

du SR~ t,u!K~u,t8!

1E
0

t8
du SK~ t,u!R* ~ t8,u! ~16b!

5E
t8

t

du SR~ t,u!K~u,t8!1E
0

t8
du~SK~ t,u!

3R* ~ t8,u!2SR~ t,u!K* ~ t8,u!!. ~16c!

•The boundary conditions, which derive respectively fro
Eq. ~2b! and the commutation relations of the boson:

K~ t,t !52 i ~2S11!, ~16d!

lim
t→(t8)1

R~ t,t8!52 i . ~16e!

•The self-energy in LO representation@these formulas are
local in times, so the argument (t,t8) has been omitted fo
clarity#:

S[SHeis1SBath, ~16f!

SR
Heis[2

JH
2

4
~~ uRu22uKu2!R1~R* K2K* R!K !,

~16g!

SK
Heis[2

JH
2

4
~~ uRu22uKu2!K1~R* K2K* R!R!,

~16h!

SR
Bath[

JB
2

4
~~ uR0u22uK0u2!R1~R0* K02K0* R0!K !,

~16i!

SK
Bath[

JB
2

4
~~ uR0u22uK0u2!K1~R0* K02K0* R0!R!,

~16j!

whereR0 andK0 are defined in the same way thatR andK
starting from Ga,b

0 . This expression emphasizes the ve
similar structure of the two terms in the self-energy: mo
generally, the bath term readsSR

Bath}xK
0 R1xR

0K and SK
Bath

}xR
0R1xK

0 K, where xR
0 and xK

0 are the retarded and th
Keldysh part ofx0, respectively.
09441
-
Finally, we now derive the expression for the respon

and correlation functions for spins defined in Eq.~3!. In the
N→` limit, CS andRS can be easily computed fromR and
K using the relations:

RS~ t,t8!5
i

N2 (
ab

^Sab
1 ~ t !~Sba

1 ~0!2Sba
2 ~0!!&

5Im~K~ t,t8!R* ~ t,t8!!, ~17a!

CS~ t,t8!5
1

N2 (
ab

^Sab
1 ~ t !Sba

1 ~0!2Sab
2 ~ t !Sba

2 ~0!&

5
1

4
~ uK~ t,t8!u22uR~ t,t8!u22uR~ t8,t !u2!.

~17b!

To derive Eq.~17a!, we used Eqs.~2a!, ~2b!, the SU(N)
invariance, the limitN→` ~to drop subdominant terms!, and
the relations betweenGa,b andR, K, A that invert Eq.~13a!.

Equations~16! describe the dynamics of the quantu
Heisenberg spin glass in the large-N limit, coupled to the
bath. In the following sections, we present an analysis
these equations both in the paramagnetic regime and in
aging regime, together with some results extracted from
numerical solution of this systems. Let us first make a f
preliminary remarks:

~i! Contrary to the quantump-spin problem studied in
Ref. 25, there is no need here for a Lagrange paramete
sociated to the constraint. This is due to the fact that
constraint Eq.~2b! commutes with the Hamiltonian an
hence is conserved in the time evolution. Indeed one
check that Eqs.~16g!, ~16h!, ~16i!, ~16j! and ~16a!, ~16c!
imply:

dK~ t,t !

dt
}Im

]

]t
K~ t,t8!u t85t50. ~18!

Thus if the boundary condition is verified fort5t850, it
will propagate at all later times.

Formally, one can introduce such a parameterl in the
equation, by replacingi ] t by i ] t1l, but it can be removed
using a U(1) gauge transformation@K(t,t8),R(t,t8)#

→@K̃(t,t8),R̃(t,t8)#5@e2 il(t2t8)K(t,t8),e2 il(t2t8)K(t,t8)#:
if K,R are a solution of the equations withl, @K̃,R̃# are a
solution withl50. This symmetry comes from the fact th
we represented the spin~the physical object! with the bosons
~a mathematical tool! and that the bath couples to the sp
and not to the boson, and thus cannot break the symme
this has an important consequence~see ii!.

~ii ! In equilibrium , the spin response and correlatio
functions are related by thequantum fluctuation-dissipation
relation ~QFDR!:

RS~t!5 iu~t!E
2`

1`dv

p
exp~2 ivt!tanhS bv

2 DCS~t!.

~19!
4-5
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GIULIO BIROLI AND OLIVIER PARCOLLET PHYSICAL REVIEW B 65 094414
It is important to notice that instead the boson response
correlation functionsR andK are not in principle related by
this QFDR. Technically, this is due to theU(1) invariance
explained above: if@K(t,t8),R(t,t8)# satisfies QFDR Eq.
~19!, @K̃,R̃# will not in general. Imposing QFDR for the
boson demands thatl takes a precise valuel0. However,
this is not a problem since the only physical objects are
spin response and correlation functions. When using
Matsubara imaginary time formalism, one does not face
difficulty, since one automatically requires the QFDR to
satisfied, because of theb-periodicity of the imaginary time
boson Green function. Thus when we will analytically co
tinue our equations in imaginary time to compare to Mats
ara computations~see Appendix A!, we will have to reintro-
ducel0.

~iii ! The presence of the thermal bath is clearly requir
for JB50, the solution of the equations has the prope
K(t,t8)5(2S11)R(t,t8) for all t,t8 @this can be check orde
by order in the coupling constantsJH and JB , using Eqs.
~16a!, ~16c!, ~16g!, ~16h!, ~16i!, ~16j!# and it is clearly incor-
rect ~for example, it can not satisfy the high temperatu
limit of the fluctuation-dissipation relation!.

~iv! We can immediately generalize these equations in
fermionic case by changingS→2S,JH

2 →2JH
2 (S is the size

of the ‘‘fermionic’’ spin, and the sign change in front of th
coupling constant comes from the fact that there is now
fermion loop in the diagram!. We will see in Sec. IV that this
simple change leads to the disappearance of the aging
nomena, as expected.34

IV. SOLUTIONS OF THE DYNAMICAL EQUATIONS

In this section, we present the solution of the dynami
equations~16! using both numerical and analytical resul
Indeed, these integro-differential equations are causal, so
can construct the solution step by step in time. This prope
is very general~see Ref. 25 for another example! and it is the
basis for the numerical algorithms, although in this probl
some new technical refinements are needed in order to c
pute an accurate solution at a reasonable cost in comp
tional time ~see Appendix B for a detailed discussion!. The
numerical solution shows that the model has a dynam
phase transition at a temperatureTd(S,JB) between a para
magnetic phase (T.Td) and a glassy phase (T,Td), as ex-
pected on general grounds and predicted in Refs. 21, 22
high temperature, the system equilibrates inside the p
magnetic state: after a transient time all the two-time qu
tities become time-translation invariant~TTI! and the quan-
tum fluctuation-dissipation relation~QFDR! holds. Instead at
low temperature the system never equilibrates on fin
timescales37 and one can identifies two different time secto
on which the two-time functions evolve: whent8 is large but
the differencet2t8 is of the order of one and very sma
compared tot8 the system seems to be equilibrated~the
QFDR is approximatively verified and all the one-time qua
tities, as the energy or the Edwards-Anderson param
have almost converged to their asymptotic values!. However,
on larger timescales, whent2t8 is of the same order oft8,
an extremely slow dynamics sets in. In this regime
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QFDR is violated and the aging phenomenon appears.1,2,25

We remark that if one takes the long time limit and then s
the coupling to the bath to zero, then the dynamical solut
gets back to the equilibrium forT.Td only. For T,Td the
system never reaches a stationary solution. However,
pseudo-equilibrium solution reached in the time sec
t2t8;O(1)!t8 can be also obtained by a pure sta
computation using the marginality prescription.22 In the fol-
lowing, we will takeJB.0 (JB51 for numerical computa-
tion!. In Sec. IV, we will discuss what happens when chan
ing the value ofJB .

A. Equilibration into the paramagnetic state

At high temperature, the numerical solution shows, as
pected, that the system equilibrates into the paramagn
state after a transient timeteq: for t,t8@teq the response and
correlation becomes a function oft5t2t8 only and they are
related by the QFDR~see Fig. 2!. This is indeed what we
obtain from the analysis of Eqs.~16a!, ~16c! in the limit
t,t8→` with t5t2t8 fixed. In this limit the equation onK
andR can be easily written in Fourier space~we reintroduce
the l term, in agreement with the discussion at the end
Sec. III!:

R21~v!5v1l2SR~v!, ~20a!

K~v!5SK~v!uR~v!u2. ~20b!

As in Ref. 25, it is possible to show order by order in pe
turbation theory that these equations admit a solution s
that the spin correlation and response functions sat
QFDR. In Fig. 2, we plot the spin correlation functio
CS(tw1t,tw) and the response functionRS(tw1t,tw) as a
function of t for different tw for JB51, JH51 andT510.
These figures represents the typical behavior ofCS andRS in
the paramagnetic phase: after a short transient time the f
tions become TTI~they do not depend ontw anymore! and

FIG. 2. Spin response as a function oft for tw

51.5,2,2.5,3,3.5,4,4.5,5,10,15,20,25@from bottom to top (tmax

5100)#, JB5JH51, S51 and T510 ~inside the paramagnetic
phase!. After a transient time the response converges to a station
equilibrium regime. Inset: spin correlation as a function oft for the
same parameters.
4-6
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OUT-OF-EQUILIBRIUM DYNAMICS OF A QUANTUM . . . PHYSICAL REVIEW B65 094414
they decay quickly as a function oft. Moreover, in Fig. 3,
we plot the retarded function computed directly from t
numerical solution and from the correlation function usi
the QDFR. The excellent agreement shows that QFDR
satisfied and the system has relaxed to equilibrium.

This asymptotic solution represents the equilibrium d
namics inside the paramagnetic state and it exist only ab
Td . At T5Td the equilibration time diverges and remai
infinite in all the low temperature phase (T,Td), as clearly
indicated by the numerical solution~see Fig. 4!. The study of
this regime is the subject of the next subsections.

FIG. 3. Fourier transform of the spin response function~dots!
compared to its expression~continuous line! computed by the
QFDR from the correlation forJB5JH51, S51, tW.10, andT
510 ~inside the paramagnetic phase!. The excellent agreemen
shows that the system is fully equilibrated.

FIG. 4. Spin correlation as a function oft for tw

515,20, . . . ,95 @from bottom to top (tmax5100)#, JB5JH5S51,
and T50.1 ~inside the glassy phase!. The height of the dotted
straight line equals the Edwards-Anderson parameter comp
within the static formalism and coincides well with the plate
value. The aging behavior is explicit. Inset: zoom of the spin c
relation as a function oft on the time interval corresponding to th
stationary regime fortw55,10,25,37.5,50,75 from bottom to top
The curves show a clear convergence toward a TTI stationary
gime.
09441
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In principle, one would like to take a smallJB , so that it
allows the system to relax but does not change the valu
the paramagnetic state. However, the relaxation time
verges whenJB goes to 0, even in the paramagnetic sta
and this prevent the numerical program to converge towa
the solution in a reasonable amount of time. We found t
JB51 is a good compromise. Indeed the imaginary tim
computation shows that the results atJB50 are close toJB
51. This relatively big value reflects the fact our bath, co
pling to the spin degrees of freedom, is not very efficient
more precise discussion will be given in Sec. V.

B. General properties of the glassy dynamics

The numerical results and the analytical analysis of
dynamical equations indicates that the system remains
ways out of equilibrium at low temperature (T,Td). In the
following we present the Ansatz which gives the asympto
solution in the glassy regime and we compare it to the
merical results obtained integrating the dynamical equa
numerically. This Ansatz is a slight generalization of the o
introduced by Cugliandolo and Lozano25 for quantum glassy
systems, which is itself a generalization of that discovered
Cugliandolo and Kurchan for classical glassy systems.2

1. The weak-ergodicity breaking and the weak long-term
memory Ansatz

In the long time limit (t,t8@1) we make the following
Ansatz for the behavior of the bosonic correlation and
sponse function:25

K~ t,t8!.FKST~ t2t8!1KAGS h~ t8!

h~ t ! D Ge2 il(t2t8),

~21a!

R~ t,t8!.FRST~ t2t8!1
h8~ t8!

h~ t !
RAGS h~ t8!

h~ t ! D Ge2 il(t2t8),

~21b!

lim
t→`

KST~ t !50, ~21c!

KST~0!52 i ~2S11!1 ig, ~21d!

KAG~0!50, ~21e!

KAG~1!52 ig, ~21f!

whereh(t) is an increasing function oft, h8(t) is the first
derivative ofh(t), g is a real number38 andg2/4 is equal to
the Edwards-Anderson parameterqEA . Note the physics hid-
den in this Ansatz: in the time regime in whicht,t8 are large
but their difference remains finite~called TTI-regime in the
following! the system seems to have reached a station
state, however on a timescale diverging witht,t8 @t,t8 are
large but the ratioh(t8)/h(t) remains finite# there is a sec-
ondary evolution called aging1. This unveils the interpreta
tion of h(t) as a self-generated effective timescale.

Moreover, we notice that if this scenario is realized for t
bosonic correlation and response functions then it will
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GIULIO BIROLI AND OLIVIER PARCOLLET PHYSICAL REVIEW B 65 094414
also realized for the spin correlation and response funct
and for the self-energies. The presence of the oscillating
ponential is a slight generalization with respect to Ref.
and it could be gauged away, as discussed before. Moreo
when one computes thespin correlation and response func
tions these exponentials cancel.

The second key ingredient that makes the asympt
problem tractable is the assumption ofthe weak long-term
memory property2,25 that allows one to decouple the trans
tory regime from the asymptotic one. In fact, the dynami
equations contains explicit memory terms which couple
the timescales. So, how can one analyze the asymptotic
gime without solving the complete problem? Within th
weak long-term memory scenario the~linear! response to a
finite time perturbation vanishes in the long time limit (t,t8
→`), whereas the response to a perturbation which acts
infinite timescales~i.e., diverging ast,t8) is finite. More pre-
cisely:

lim
t→`

E
0

t*
R~ t,u! f ~u!du50 but lim

t→`
E

0

t

R~ t,u! f ~u!duÞ0,

~22!

where f (t) is a generic function. Therefore the dynamics
‘‘infinite timescales’’ (t,t8→`) decouples from the transi
tory regime.

Finally, we note that more general Ansa¨tze with a set of
different diverging timescales have been used in the con
of classical39,40 and quantum30 glassy systems. Howeve
these types of solutions are physically and technically rela
to a full replica symmetry breaking solution in the therm
dynamical analysis. For systems characterized by a one
replica symmetry breaking solution in the thermodynami
as the model we are focusing in Ref. 21, one generally
pects only one diverging timescale.

2. Generalized QFDR

An outstanding physical property of the asymptotic d
namical solutions, discovered in the classical case by Cu
andolo and Kurchan2 and in the quantum case by Cuglia
dolo and Lozano,25 is that in the aging time-sector@ t, t8 and
t2t8 are large but the ratioh(t8)/h(t) stays finite# the stan-
dard fluctuation-dissipation relation is violated but there
ists a generalized fluctuation dissipation relation~GFDR! be-
tween the correlation and the response functions which
the usual functional form of the FDR~generalized to non-
TTI functions! and in which the temperatureT is replaced
with an effective temperatureTeff .25 Two remarks are in
order concerningTeff . First, a physical one: the effectiv
temperature has a real physical meaning of temperatu41

since is what a thermometer, whose reaction time equals
timescales on which the aging evolution takes place, wo
measure. Second, a technical one. The effective tempera
Teff is related to the breaking pointx arising in the replica
symmetry breaking solution of the thermodynamics, i
Teff 5T/x. A general argument to show why one expects t
to be true for a very large class of classical systems, inclu
finite dimensional systems, has been presented in Ref. 4
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It is important to note, as pointed out in Ref. 25, that
the quantum case the GFDR is expected to become class
The argument is the following: ifTeff is finite then the Fou-
rier integral relating the correlation and the response is do
nated byv}0. Hence, one can develop the hyperbolic ta
gent recovering back a classical generalized fluctuati
dissipation relation, which in our case~for spins! reads:

RS~ t,t8!5
1

Teff
] t8CS~ t,t8!. ~23!

This becomes a relation between the aging functions:

RS
AG~m!5

1

Teff
~CS

AG!8~m!, ~24!

wherem5h(t8)/h(t). Moreover, this has been argued to
generically true for models with simple commutation re
tions ~particles and rotors! in Ref. 30 since the dynamica
equations are fixed point of the re-parametrization group
time transformations and therenormalizedaging dynamics
becomes classical at the fixed point. The quantum mecha
enters only as a renormalization of the coefficients of
dynamical equations. We will show that this is also the ca
for our system which is characterized by nontrivial comm
tation relations between the spins~contrary to the case o
rotors or particles!. However, the behavior next to the qua
tum critical point is still unclear~see Sec. VI!.

C. Numerical results

The numerical procedure used is described in Appen
B. It turns out that the problem is more difficult to solve tha
the classical ones or the quantump-spins model, because th
dynamical equations are for the auxiliary bosonb and not
directly for the physical spinS. As clearly indicated in the
Ansatz, even in the aging time-regime where the spin co
lation and response function evolve very slowly, the boso
functions oscillate wildly. The numerical solution thus d
mands a more sophisticated algorithm, inspired from w
known methods to solve one variable differential equatio

The numerical results support and validate completely
out of equilibrium scenario encoded in the Ansatz~Sec.
IV B 1!. In the following we present the results forJH51,
JB51 and a temperature well inside in the glassy phasT
50.1. In Figs. 4 and 5 we plot, respectively, the spin cor
lation function CS(tw1t,tw), the spin resonance functio
RS(tw1t, tw), and the spin integrated response functi
x(tw1t,tw)5* tw

tw1t dsRS(tw1t,s) as a function oft for

different values oftw . We remark that a pseudo-stationa
regime sets in fort,1 with a plateau, whose height is th
Edwards-Anderson parameter. Its value (qEA

st .0.88), com-
puted from the static analysis by the marginality prescripti
is represented with a dashed line in Fig. 4: this shows v
good agreement between the two methods.

Moreover, the fact that correlation and response are
lated by the QFDR in this time sector,~see Fig. 6!, nicely
shows that this is indeed a pseudo-equilibrium regime.

On a longer timescalet}tw the aging behavior sets in a
clearly indicated in the two figures. The integrated respo
4-8
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and the correlation evolve more and more slowly increas
tw . Note that the behavior ofx shows explicitly the weak
long-term memory scenario: even if the response vanis
the aging time sector the integrated response does not. Th
fore the magnetization response to a constant and small m
netic field switched on attw depends always explicitly ontw
and becomes slower increasingtw . Moreover, we note tha
the numerical results strongly suggest thath(t)5t. Indeed
the different curvesCS(tw1t,tw) collapse very well on a
single curve@KAG(m)# when plotted as a function of (tw
1t)/tw ~see Fig. 7!. We have also verified the correctness
the GFDR hypothesis. In Fig. 8, we show a parametric p
of x as a function ofCS for different values oftw . For
classical systems1 the limiting curve~for tw→`! is very use-
ful to characterize the aging behavior. For systems with o

FIG. 5. Spin response as a function oft for tw

55,10,25,37.5,50,75@from top to bottom (tmax5100)#, JB5JH

5S51, andT50.1 ~inside the glassy phase!. Inset: zoom of the
integrated response as a function oft on the time interval corre-
sponding to the stationary regime fortw55,10,25,37.5,50,75 from
bottom to top. The aging behavior and the weak long-term mem
scenario are explicit.

FIG. 6. TTI part of the spin response function~dots! compared
to its expression~continuous line! computed by the QFDR from the
correlation forJB5JH51, S51, tW.10, andT50.1.
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one diverging timescale, because of the form of the FDR
the GFDR, one finds a two straight line plot wherex
}2(1/T)CS for qEA,CS,C(t,t) and x}2(1/Teff)CS for
0,CS,qEA . In the quantum case the situation is more
volved since in the stationary regimeRS andCS are related
by the QFDR, therefore one does not expect that forqEA
,CS,K(t,t) the plot should be very useful. However, a
discussed in Ref. 25, in the aging time sector where 0,CS
,qEA the GFDR becomes classical and one should recov
straight line for x whose slope equals the inverse of t

ry

FIG. 7. Spin correlation as a function oft/tw for tw

515,20, . . . ,95 @from bottom to top (tmax5100)#, JB5JH5S51
and T50.1. These are the same curves plotted in Fig. 4 but w
respect to the variablet/tw . The excellent collapse strongly sug
gests that the functionh(t) ~present in the dynamical Ansatz!
should be equal tot.

FIG. 8. Parametric plot of the spin integrated response a
function of CS for tw540,45,55,60,65,70 (tmax5100), JB5JH5S
51 andT50.1 ~inside the glassy phase!. The collapse predicted by
the dynamical Ansatz is good. The vertical dotted straight line
dicates the values of the Edwards-Anderson computed within
static formalism. The dashed straight line has a slope21/Teff ,
where 1/Teff5x/T and x has been computed within the static fo
malism. The curves clearly show that the generalization of the fl
tuation dissipation relation holds in the aging regime.
4-9
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GIULIO BIROLI AND OLIVIER PARCOLLET PHYSICAL REVIEW B 65 094414
effective temperature. This is indeed what we find in Fig.
where we compare the behavior ofx at low CS with a
straight line whose slope is 1/Teff 5x/T. x is the breakpoint
in the one-step replica symmetry breaking solution obtai
~for the same value of the parameters!, generalizing the
analysis performed in Ref. 21 to taking into account the pr
ence of the bath~see Appendix A!.

Finally, we can obtain the equations for the fermion
model by the simple changeS→2S,JH

2 →2JH
2 in Eq. ~16!

as discussed previously. Numerically solving these equat
we have found no glassy behavior as predicted in Ref.
Indeed we show in Fig. 9 the spin correlation function in t
fermionic case, which does not show any aging behavio
low temperature, whereas the same calculation for bos
~with the same parameters! clearly does.

D. Analysis of the stationary regime

We focus now on the time sector in which the differen
betweent andt8 stays finite andt,t8 are very large. Hence, in
Eqs.~21a!, ~21b! the aging part does not evolve and is ze
for the response and equals2 ig for the correlation. Plugging
the Ansatz Eqs.~21a!, ~21b! into the dynamical equations w
get:

~ i ]1l!RST~ t !5E
0

t

dt8SR
ST~ t2t8!RST~ t8!1d~ t !, ~25!

~ i ]1l!KST~ t !5E
2`

1`

dt8SR
ST~ t2t8!KST~ t8!

1E
2`

1`

dt8SK
AG~ t1t8!RST* ~ t8!1A,

~26!

FIG. 9. Spin correlation as a function oft in the fermionic case
for tw512,14, . . . 48 (tmax5100), JB5JH51, S50.5, andT50.1.
Inset: Spin correlation as a function oft in the bosonic case for the
same value of the parameter. This figure clearly shows the exist
of aging in the bosonic case and its absence in the fermionic o
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A5 lim
t→`

E
0

t

du
h8~u!

h~ t !
SR

AGS h~u!

h~ t ! DKAGS h~ t !

h~u! D
1 lim

t→`
E

0

t

duSK
AGS h~u!

h~ t ! D h8~u!

h~ t !
RAG* S h~u!

h~ t ! D
2 igE

0

`

dt8SR
ST~ t8!1SK

`E
0

`

dt8RST~ t8!1 ilg,

~27!

where we have used for the self-energy the same nota
introduced in Eqs.~21a!, ~21b!, andSK

`5SK
AG(1). Since we

have definedKST(t) in such a way that it vanishes in th
long time limit, A has to be equal to zero. Note that th
overall equation couples the stationary and the aging regi
As in the paramagnetic case, one can show~order by order in
perturbation theory! thatRST andKST satisfy the QFDR~and
thereforeRS

ST,CS
ST, too!. It could seem that the procedure

fix l is different in the two cases. In fact in the paramagne
case one choosesl in such a way that the QFDR is verifie
for bosonic functions, instead nowl is such that the corre
lation and response functions do not oscillate in the la
time limit when t2t8 and t,t8 are very large. But the two
values ofl are the same an asymptotically oscillating fun
tion cannot satisfy the QFDR relation.

As a conclusion, the stationary equations can be fully
terpreted as equilibrium dynamical equations. Indeed it
been shown in the classical2 and recently in the quantum
case28 that this type of equations represents the pseu
equilibrium relaxation inside the marginally stable TA
states~local minima of the free energy landscape whose H
sian is characterized by a vanishing fraction of zero mod!.
Imposing the marginality condition in the stat
computation22 is equivalent to consider a Boltzmann me
sure restricted to the marginally stable TAP states. It is
this reason that one can get information about the out
equilibrium dynamics by a purely equilibrium computatio
However, it is important to understand that Eqs.~25!, ~26!,
~27! do not really represent an equilibrium relaxation. B
cause the marginally stable TAP states have a vanishing f
tion of zero modes, the system find always a way to ‘‘e
cape’’ to these states, even if more and more slowly and
gives rise to the aging behavior. Hence, the physical mec
nism inducing the slow dynamics is not an activated jum
dynamics across some energy barriers but it is an entr
effect. The slow dynamics of the system is due to the f
that the longer is the time the smaller is the number of
rections along which the system can escape. Finally, the
that the marginally stable TAP states dominate the o
equilibrium dynamics whereas they are not relevant for eq
librium properties helps to understand why the dynami
transition temperature is different from~actually is larger
than! the equilibrium transition temperature. In fact after
quench, the system is almost trapped in those minima
thus displays the aging phenomenon at long time. The lo
minima responsible for the slow dynamics appear at a te
perature higher thanTeq, thus Td.Teq. The activated dy-
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namics which would probably restore the equalityTd5Teq is
on timescales diverging withN, completely unaccessible t
our mean-field analysis.

E. Analysis of the aging regime

Let us now focus on the aging regime, i.e.,t, t8, and also
t2t8 are large but the ratioh(t8)/h(t) stays finite. Note that
within the following asymptotic analysis one cannot find o
what is the functionh(t).2,25,30This is indeed an open prob
lem already for classical systems. However, the numer
results~see Fig. 7! suggest that for our modelh(t)5t.

Plugging the Ansatz Eqs.~21a!, ~21b! into the dynamical
equations and after some manipulations similar to Ref. 25
get:

lRAG~m!5E
m

1dx

x
SR

AG~x!RAGS m

x D1SR
ST~v50!RAG~m!

1SR
AG~m!RST~v50!, ~28!

lKAG~m!5E
0

mdx

m
SK

AG~x!RAG* S x

m D1E
0

1

dxSR
AG~x!KAGS m

x D
1SR

ST~v50!KAG~m!1SK
AG~m!RST* ~v50!,

~29!

SR
AG~m!52

JH
2

4
~KAG

2 ~m!RAG* ~m!22uKAG~m!u2RAG~m!!,

~30!

SK
AG~m!5

JH
2

4
uKAG~m!u2KAG~m!, ~31!

whereKAG satisfies the boundary conditionKAG(1)52 ig
and we have used the notationm5h(t8)/h(t). It is important
to remark that:

~1! There is no bath contribution to the aging part of t
self-energy. This is natural and it is probably generally tr
since the bath has always its own equilibration timesc
therefore in the aging time-sector@ t, t8 and t2t8 are large
but the ratioh(t8)/h(t) stays finite# the bath is always al-
ready equilibrated and cannot give a nonconstant aging
tribution.

~2! The terms linear inR ~and higher! have been neglecte
in SK

AG , whereas the terms quadratic~and higher! have been
neglected inSR

AG . This is due to the fact that they do no
give a finite contribution in the aging equations.

~3! As pointed out in the classical case2 and recently in
the quantum case,30 Eqs. ~28!, ~29!, ~30!, ~31! are re-
parametrization invariant. However, there is only one fu
tion h(t) reached by the system in the long time limit. This
a general problem arising in the study of the asymptotic
lution of partial and integro-differential equations, called t
matching problem. Until now different techniques are kno
and applied to solve this problem for partial different
equations but its solution for the dynamical equations aris
in the study of glassy systems remains an open problem
09441
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~4! The correlation and response functions are suppo
to be related by the GFDR in the aging regime after that
exponentiale2 il(t2t8) has been gauged out. In particular th
GFDR predicts thatRAG(m)52( i /2Teff )(KAG)8(m) @in our
notation the GFDR for bosons has a2 i /(2Teff ) instead that
1/Teff #. One can indeed verify that this is really a property
the aging equations: Eq.~28! can be obtained by differenti
ating Eq.~29! and using the GFDR. Moreover, we rema
that if the bosonic correlation and response functions ve
the GFDR so do the spin correlation and response funct
as in Eq.~24!: Teff is the effective temperature.

Evaluating the aging equations inm51 and imposing the
existence of an aging solution, i.e.,RAG(1)Þ0 we obtain
two matching conditions with the stationary regime:25 the
first one is

l5SR
ST~v50!1 USR

AG

RAG
U

m51

RST~v50! ~32!

and the second is the same one already obtained from
long-time limit of the stationary equation, i.e.,A50 @Eq.
~27!#. One can simplify further these two matching equ
tions. Indeed, thanks to the GFDR Eq.~24!, one can perform
the integrals on the aging functions inA. Hence, using the
zero frequency term of Eq.~25!, we get:

JH
2

4
RST

2 ~v50!g2S URAG*

RAG
U

m51

12D 51, ~33!

i

2Teff
SK

`g2
ig

RST~v50!
2SK

`RST* ~v50!50. ~34!

Moreover, becauseRST is a bosonic response function in
pseudo-equilibrium regime, its zero frequency componen
real and negative. Therefore (RAG* /RAG)um51 is a real num-
ber equal to one or minus one that we will notez in the
following andRST(v50) reads:

RST~v50!52
2

JHgA21z
. ~35!

Plugging this expression into Eq.~34! and using thatSK
`

52 i (JH
2 /4)g3 , we finally obtain the equation forTeff . The

aging solution corresponds toz511 (z521 implies
g2/Teff 50) and is characterized by the following equatio

JHqEA

T eff
5S A32

1

A3
D , ~36!

where we have replacedg254qEA . Note that, replacingTeff
with T/x ~wherex is the breakpoint in the one-step replic
symmetry breaking scheme! this becomes the same equatio
obtained in Ref. 21 using the marginality condition.

Indeed Eqs.~25!, ~26! with A50 and Eqs.~35!, ~36! and
the boundary conditionKST(t50)52 i (2S11)1 ig are a
closed set of equations that completely determin
KST, RSR, l, Teff , qEA . In Appendix A, we show that they
are completely equivalent to the equations studied in R
4-11



ti

-

u

r
re

-

is
n
t

rs
n
i-
-

f i

on

re
o
any
u-
ply

dy-
re-

,
ition

i-
n-

rder

ture
is

he
al
h,
d
uc-
ed

ion
ize
q.
ing
d the

in-

y-
n a

mal

GIULIO BIROLI AND OLIVIER PARCOLLET PHYSICAL REVIEW B 65 094414
21, 22 using the marginality prescription within a pure sta
computation. Finally, let us stress that, even ifJB is not
present in Eq.~36!, Teff depends onJB because the Edwards
Anderson parameter depends onJB via Eqs.~25!, ~26! which
contains explicitly this coupling constant.

V. ROLE OF THE RELAXATION BATH

In this section, we briefly discuss the effect of the co
pling strength to the relaxation bathJB . In deriving Eqs.
~16!, we took a generic bath and expand in second orde
its coupling constantJB . Thus the equations we derived a
a priori only valid in the limit of smallJB . However, we will
show that our main equations~16! also describe the dynam
ics of a model with finiteJB in a extreme limit. Thus it is
legitimate to study them forJB finite ~there is no risk of
inconsistencies!.

The effect of the bath will of course depend on its prec
form. Two types of bath can be considered: baths that o
couple to the spin, and baths that couple to the boson or
fermions. In this discussion, we will concentrate on the fi
kind, since the spin is the physical object, not the boson. O
of the simplest possibility is to couple the spin to two ferm
ons using the Kondo interaction. In order to take the largeN
limit, we directly introduce theSU(N)3SU(Ng) Kondo
model, withNg flavors, defined by:43

H5
1

ANN
(
i , j

Ji j SW i•SW j1 (
1< i<Ng
1<a<N

k

ekckia
† ckia

1
JB

NAg
(

1<a,b<N
1< i<Ng

Siabckib
† ck8 ia , ~37!

wherec are the bath fermions,ek their kinetic energy, andJB
is now the Kondo coupling. In the large-N limit, one can still
find a closed system of equations, but at the expense o
troducing auxiliary fermionic Green functionsr and k, as
explained, for example, in Ref. 43. The dynamical equati
are similar to Eqs.~16!: Eqs.~16a!, ~16b!, ~16d! are the same
and the bath term in self-energies Eqs.~16i!, ~16j! are re-
placed by:

SR52
JH

2

4
~~K21R2!R* 22uKu2R!2

iAgJB

2
~R0* k2K0* r !,

~38a!

SK52
JH

2

4
~2KuRu22K* ~R21K2!!2

iAgJB

2
~R0* r 2K0* k!.

~38b!

Since the bath has now a proper dynamics,r andk should be
computed using new Dyson equations:

r ~ t,t8!5d~ t2t8!1E
t8

t

du sR~ t,u!r ~u,t8!, ~39a!
09441
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k~ t,t8!5E
0

t

du sR~ t,u!k~u,t8!1E
0

t8
du sK~ t,u!r ~ t8,u!* ,

~39b!

and their self-energy reads:

sR
Heis5

iJB

2Ag
~R0K1K0R!, ~40a!

sK
Heis5

iJB

2Ag
~R0R1K0K !. ~40b!

r should also satisfy the boundary condition:

lim
t→(t8)1

r ~ t,t8!52 i . ~41!

It is not difficult to show that in the limit of an infinite
number of channelg→`, these equations reduce to Eq.~16!.

However, for finiteg, these equations are much mo
complex than Eqs.~16!, since at low temperature the Kond
scale appears and one has to deal with a problem with m
different scales. This really increases the difficulty of a n
merical computation. However, one can extend rather sim
the previous analytical study and verify that the same
namical scenario continues to hold. In this paper, we
stricted ourselves to study Eqs.~16! as a function of the
strength of the bathJB , using Matsubara formalism with
marginality condition.22 We found that increasingJB the spin
glass transition temperatureTg decreases monotonically and
as far as we can solve the numerical equations, the trans
is still second order, given by the conditionx51 (x is the
value of the breakpoint in the replica formalism!. However,
the decrease ofTg is slow and we could not reach numer
cally a point where it vanishes. Numerical computation ca
not, for the moment, decide whether there is a second o
phase transition until a quantum critical point at finiteJB and
T50 or the spin glass is not destroyed at zero tempera
until JB5`. As emphasized in our concluding remarks, th
situation is disappointing since we would like to study t
aging in the vicinity of a nonpathological quantum critic
point for this model. Our interpretation is that this bat
coupled to the spin directly, is not ‘‘efficient’’ enough an
that we probably need to couple to a bath with charge fl
tuations by introducing holes in the model. Such a dop
model is also interesting physically to study the destruct
of a quantum spin glass by doping. Finally, let us emphas
that solving numerically the model with the Kondo bath E
~37! or a more general bath may lead to more interest
results, such as an increase of the critical temperature an
Edwards-Anderson parameter as the coupling to the bath
creases from 0.44

VI. SUMMARY AND DISCUSSION

In this paper we have studied the out of equilibrium d
namics of the quantum Heisenberg spin glass defined o
completely connected lattice and coupled to a spin ther
bath. We have replaced theSU(2) spin symmetry group with
4-12
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SU(N) and we have considered the large-N limit. This has
allowed us to have a more tractable model which, howe
seems to capture some of the physics of theSU(2) case.22

Thanks to the large-N limit we have obtained a set of close
integro-differential equations on the correlation and respo
functions. By the analytical study and the numerical integ
tion of these equations we have fully analyzed the real t
~dissipative! dynamics of the mean-field quantum Heise
berg spin glass model in the large-N limit. We have consid-
ered a particular type of initial condition which correspon
to the physical situation in which, att502 the system is at
equilibrium at infinite temperature and att501 becomes
coupled to thermal bath in equilibrium at temperatureT. This
corresponds to an extremely fast quench from very high t
perature. Depending on the value ofT, the system has a ver
different long-time behavior.

At high temperature the system relaxes, after a fin
equilibration time, inside the paramagnetic state. In t
stationary regime the system is at equilibrium and
fluctuation-dissipation relation holds. When the system
quenched below a certain critical temperatureTd , which de-
pends on the values of the spin and the system-bath coup
it never reaches an equilibrium regime. At large times t
time-sectors can be identified for the behavior of the co
lation CS(t,t8) and responseRS(t,t8). When t and t8 are
very large, but their difference remains of the order of o
the systems reaches a pseudo-equilibrium regime in w
the QFDR is verified. However, on a larger timescale,
verging with the age of the system (t2t8}t,t8), there is a
secondary relaxation called aging. In this regime the qu
tum fluctuation-dissipation relation is violated and the cor
lation and the response are related by a generalization o
classicalfluctuation-dissipation relation characterized by
effective temperature different from the bath temperature

Moreover, we have also studied the role of the bath. Fi
we have taken a linear coupling of the spin to the bath,
have developed to the second order in the coupling cons
and integrated out the bath spins. In this way we have fo
a generalization of the Feynman-Vernon influen
functional45 for spins in which the properties of the ba
enters only through its susceptibility. All the numerical stu
has been done in this case. However, we have also con
ered a more general type of bath and we have shown th
‘‘simple’’ one turns out to be a Kondo bath. We have e
tended the analytical study to this case and have shown
the previous dynamical scenario continues to hold. Furth
more we have unveiled that the way we have followed p
viously to treat the system bath coupling can be recovere
a limiting case of a Kondo bath. Finally, we have also ve
fied numerically that, as far as we can go increasing
coupling to the bath in Eq.~5!, the dynamical transition re
mains of second order~by this we means that the asymptot
dynamical energy is continuous! and the critical temperatur
does not vanish.

The most striking features of the low temperature out
equilibrium dynamics are the aging phenomenon and
generalization of the fluctuation-dissipation relation out
equilibrium. It has been shown for spherical spins25 and for
rotors29,30 that a generalization of the classical fluctuatio
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dissipation relation holds in the aging regime. In this pap
we have shown that this is the case also for models wit
nontrivial spin algebra. These results seem to suggest
except for the renormalization of the coefficients of the d
namical equations, the aging regime is not affected by qu
tum fluctuations and the aging systems behaves classical
their slow evolution. But is this always true? Is it not po
sible to find ‘‘a quantum system which ages coherently
Since, in general, the decoherence time is finite and the a
regime takes place in the large time limit, a classical ag
regime is always expected to set in at large enough ti
However, there is an important case in which this naive
gument may fail. Near a quantum critical point the decoh
ence time diverges, therefore it could be possible that at v
large times~larger than the time on which the system ente
in the asymptotic regime and than the characteristic tim
cale of the TTI regime!, but still lower than the decoherenc
time, the systemages coherently. We could not address thi
very interesting question for the quantum Heisenberg s
glass analyzed in this paper: the technical reason is tha
quantum critical point is rather pathological since it corr
sponds to a vanishing spin size. Hence, another type
model with a less singular quantum critical point has to
studied. Work is in progress in this direction.

ACKNOWLEDGMENTS

Both authors are supported by the Center of Mate
Theory, Rutgers University. We also thank NSF DM
0096462 and the Rutgers Computational Grid for support
the numerical computations.

APPENDIX A: FROM REAL TIME TO IMAGINARY TIME

In this Appendix, we give explicit formulas for doing th
Wick rotation to imaginary time in equilibrium. Let us de
fine:

@G#~ t ![H G11~ t ! for t.0

G22~ t ! for t,0.
~A1!

We note that this function has a simple expression in te
of the spectral density~using equilibrium FDT!:

@G#~ t !5H i E der~e!ňB~e!e2 i et for bosons

2 i E der~e!ňF~e!e2 i et for fermions

@Ǧ#~ t !5H 2 i E der~e!nB~e!ei et for bosons

i E der~e!nF~e!ei et for fermions,

where nB(e) and nF(e) are the Fermi and Bose function
respectively, and we use the notationf̌ (x)[ f (2x). Thus@G#
is analytic int, and we have the relation:

@G#~2 i t!5 iG~t!, 0,t,b, ~A2!
4-13
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@Ǧ#~2 i t!5H iG~b2t! 0,t,b for bosons

2 iG~b2t! 0,t,b for fermions,
~A3!

where the Matsubara Green function is defined by:46

G~t![2^Tb~t!b†~0!&5E der~e!ňB~e!e2et for bosons,

~A4!

G~t![2^T f~t! f †~0!&

52E der~e!ňF~e!e2et for fermions. ~A5!

The same formula also holds for the self-energy.
Using this result, we find the imaginary time equations

the paramagnetic state:

~G21!~ inn!5 inn1l2S~ inn!, ~A6a!

S~t!5G~t!~JH
2 G~t!G~2t!1JB

2x0~t!!, ~A6b!

G~t502!52S. ~A6c!

They are a slight generalization of Eq.~5! of Ref. 22, includ-
ing the bath.

Similarly, in the glassy phase, using the same techniq
we find Eqs.~31! of Ref. 22 with Q51/A3, which corre-
sponds to the marginality criterion, as explained in Ref. 2

APPENDIX B: NUMERICAL SOLUTION

In this Appendix, we provide some details about the n
merical solution of our main equations~16!. In order to com-
puteR andK on the domain 0,t8,t, we use the causality o
Eqs.~16!: in order to compute the function in (t,t8) we only
60

ev

A

h-

09441
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need the knowledge of the functions at previous times, so
can construct the functions step by step in time along tht
direction. This structure of the equations is general for cl
sical or quantum spin glass dynamical problems,~see, e.g.,
Ref. 25!. We have to solve a set of coupled differential equ
tions in t. However, in this problem the situation is mo
complicated, since we first have to compute an unphys
bosonic function, which oscillates a lot. A naive algorithm
to compute the derivatives a each point (t,t8) for a fixed t,
and extrapolate using a first order Taylor expansion. Ho
ever, for numerical integration of ordinary differential equ
tions~ODE!, this method is not recommended~see, e.g., Ref.
47!, since one needs a very tiny mesh size to obtain accu
result. In our case, we found that this simple algorithm do
not give any good result for a reasonable computational c
contrary to simpler models studied previously~e.g., classical
p-spins models!.

Hence, we used a modified procedure, inspired by
Stoer-Burlish algorithm for~ODE!: let us assume that we
have computed the functions until timet and we want them
at time t1d whered is our mesh size. We cut this step in
N parts, and compute the functions fort1 id/N for all t8 and
1< i<N, using the modified midpoint method.47 We then
obtain the functions att1d, for variousN and all t8 and we
extrapolate the result toN→`. Typically, we use 3 or 4
values ofN among$4,8,16,32%. The integrals are compute
using either a trapezoidal or a Simpson formula. It is imp
tant to notice that the structure of Eqs.~16! implies that we
do not need to keep the intermediate point after thet1d
have been computed. As explained in the text, the dynam
equations conserve the constraint, which is automatically
isfied in the time evolution: it is also important for the st
bility of the algorithm that its discrete implementation
Eqs.~16! respects this conservation exactly.
,

s.
1J. P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Me´zard, in
Spin Glasses and Random Fields, edited by A. P. Young~World
Scientific, Singapore, 1997!.

2L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett.71, 173
~1993!.

3L. Bellon, S. Ciliberto, and C. Laroche, cond-mat/00081
~unpublished!.

4S. Sachdev,Quantum Phase Transition~Cambridge University
Press, Cambridge, 1999!.

5W. Wu, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Phys. R
Lett. 71, 1919~1993!.

6E. Courtens, J. Phys.~France! Lett. 43, L199 ~1982!; R. Pirc, B.
Tadic, and R. Blinc, Phys. Rev. B36, 8607 ~1987!; E. Mat-
sushita and T. Matsubara, Prog. Theor. Phys.71, 235 ~1984!.

7A. Vaknin, Z. Ovadyahu, and M. Pollack, Phys. Rev. Lett.84,
3402 ~2000!.

8F. C. Chou, N. R. Belk, M. A. Kastner, R. J. Birgeneau, and
Aharony, Phys. Rev. Lett.75, 2204~1995!.

9S. Rogge, D. Natelson, and D. D. Osheroff, Phys. Rev. Lett.76,
3136~1996!; S. Rogge, D. Natelson, B. Tigner, and D. D. Os
eroff, Phys. Rev. B55, 11 256~1997!; D. Natelson, D. Rosen-
.

.

berg, and D. D. Osheroff, Phys. Rev. Lett.80, 4689~1998!.
10D. Fisher, Phys. Rev. B51, 6411~1995!; F. Igloi and H. Rieger,

ibid. 57, 11 404~1998!; M. Y. Guo, R. N. Bhatt, and D. A. Huse
Phys. Rev. Lett.72, 4137 ~1994!; H. Rieger and A. P. Young,
ibid. 72, 4141~1994!; A. H. Castro Neto and B. A. Jones, Phy
Rev. B 62, 14 975~2000!; O. Motrunich, K. Damle, and D. A.
Huse,ibid. 63, 134424~2001!.

11A. J. Bray and M. A. Moore, J. Phys. C13, L655 ~1980!.
12N. Read, S. Sachdev, and J. Ye, Phys. Rev. B52, 384 ~1995!.
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