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Out-of-equilibrium dynamics of a quantum Heisenberg spin glass
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We study the out-of-equilibrium dynamics of the infinite range quantum Heisenberg spin glass model
coupled to a thermal relaxation bath. TB&J(2) spin algebra is generalized 8U(N) and we analyze the
largeN limit. The model displays a dynamical phase transition between a paramagnetic and a glassy phase. In
the latter, the system remains out-of-equilibrium and displays an aging phenomenon, which we characterize
using both analytical and numerical methods. In the aging regime, the quantum fluctuation-dissipation relation
is violated and replaced over a very long time by its classical generalization, as in models involving simple spin
algebras studied previously. We also discuss the effect of a finite coupling to the relaxation baths and their
possible forms. This work completes and justifies previous studies on this model using a static approach.
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[. INTRODUCTION the quantum spherical p-spin glass model the quantum fluc-
tuations drive the transition toward faest order quantum
The study of the nonequilibrium dynamics of classicalphase transition at low temperature. The same phenomenon
glassy systems has been the subject of an intense researchias been observed experimentally for the insulating magnetic
the last decade. Much progress has been fasiag scaling compound LiHQY;_,F,.° In Ref. 28 it was argued that this
arguments, phenomenological approaches, and mean-figfthenomenon is to be expected in a large class of systems.
theory. One of the major achievements is the theoretical ex- In contrast, the study of real time out-of-equilibrium dy-
planation of the aging phenomena, which is one of the mostamics of quantum glassy system is a recent subject and only
striking features of glassy systems. Analysis of the out-of-very few results are available at the time of this writing. In a
equilibrium of (classical mean-field spin glasses has playedfirst pioneering paper, Cugliandolo and Loz&horesented a
a major role for several reasons. It has furnished a framedetailed solution of a quantum version of tpespin model.
work to understand, interpret, and analyze the experimentalhey showed how the out of equilibrium behavior of classi-
results and it has given important predictions on the violatiorcal glassy systems is affected by quantum fluctuations. In
and generalization of the fluctuation-dissipation relationparticular they found that the low temperature glassy phase is
out-of-equilibriunf which has been experimentally tested characterized by the aging phenomenon. In this regime, the
recently? fluctuation-dissipation relation is violated and is generalized
Usually, many glassy systems can be analyzed within @ a form that coincides with th@eneralizetlclassical one.
classical approach since they are characterized by transitiorhis could seem natural since at low frequency the quantum
temperatures at which quantum mechanical effects are ndiuctuation relation coincides with itd —0 limit (for a
relevant. Nevertheless, there are also interesting cases fosonic system Indeed it has been shown in Refs. 29, 30
which the critical temperature can be lowered to zero bythat for models with simple commutation relatiofpsrticles
tuning a parameter which controls the strength of quantunand rotor$, the classical nature of the generalized
fluctuations. This gives rise to a quantum critical point atfluctuation-dissipation relation is due to the fact the dynami-
zero temperaturé Close to this point, the quantum fluctua- cal equations are fixed point of the re-parametrization group
tions are very important and cannot be neglected. One exf time transformations and thenormalizedaging dynam-
ample which has received much attention recently is the inics becomes classical at the fixed point. The quantum me-
sulating magnetic compound Liké,_,F, which is an chanics enters only as a renormalization of the coefficients of
experimental realization of an Ising spin glass in a transversthe dynamical equations.
field.> Other systems where glassy properties in the presence However what happens for models with a nontrivial spin
of quantum fluctuations have been observed are mixedlgebras, as th&U(N) model studied in Refs. 22, 21, re-
hydrogen-bonded ferro-antiferro electric crysfaisteract- mained an open question. The study of the out-of-
ing electron systems,cuprates like La ,Sr,CuQ,® and  equilibrium dynamics of this type of quantum glassy systems
amorphous insulators. is the main aim of this paper. We will focus on the quantum
The theoretical study of quantum glassy systems has bedfieisenberg spin glass where ti&U(2) spin symmetry
performed following two different and complementary group is replaced by U(N) and take the larg®&-limit. In
routes. One-dimensional modelbke the Random Trans- this model, the spin are true quantum spins, i.e., with non
verse Ising spin chajrhave been extensively studied and it trivial commutation relations, and this introduces in the prob-
has been shown that the Griffiths-McCoy singularities ardem Berry phases which play an important rélRecently a
very important close to the quantum critical pothtOn the  detailed mean-field solution using an equilibrium approach
other hand, after the work of Bray and Mobrenuch atten- has been presented in Refs. 22, 21. The model displays a
tion was focused on infinite dimensiondimean-field  second order phase transition at a temperalygdetween a
modelst?~28 In particular, recently, it was showhthat for ~ paramagnetic phase and a spin glass phase, and it is solved
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by a one-step replica symmetry breaking scheme. Moreover;O(1). The first term is the Quantum Heisenberg spin glass
using a procedure called “the marginality condition,” the Hamiltonian, the third and the second terms represent, re-

existence of a dynamical transition has been predicted at gyectively, the thermal bath of spiasand its coupling to the
temperaturer>_Teq. First mtroduced_ a_nd discussed in the spins§i via the coupling constanis. Let us now discuss
guantum case in Ref. 18, this prescription was used in Ref§hem separately

22, 21 since it led to the most acceptable solutions. Recently, Among the possible representation of tB&I(N) spin

the TAFégapproach has been fully generalized to quantury, . \ersions have been studide?? the bosonic modelin
systems. T_he relat|onsh|p_ between TAP and replica aP"\vhich the spin operatos is represented using constrained
proaches gives a further hint on why one has to choose th§chwinger bosonb by

marginal solution in the replica method. In fact this solution
is related to the marginally stable TAP states which have S .=b'b.—Ss (2a)
some flat directions around them in thguantum free en- ap Fa"p B
ergy landscape, contrary to all the others which are com- N
pletely stable. Assuming that the quantum out of equilibrium 2 b'b =SN (2b)
dynamics is dominated by the presence of flat directions a=1 ¢ '
around the marginally stable TAP states, as it happens in the
classical case, one finds a more natural justification of “theand thefermionic model in which the spin operato8 is
marginality condition.” However, only a complete dynamical represented similarly using Abrikosov fermiofisby S,z
analysis can fully justify this procedure. The analysis per-Ifoﬁ—Sﬁaﬁ, with the constraint2,, f! f,=SN (0=<S
formed in this paper of the real time out of equilibrium dy- <1). See Ref. 33 for an introduction to this two representa-
namics, using the Schwinger-Keldysh closed timetions. The two models are technically very similar but there
formalism3'32indeed shows its correctness. is an important physical difference between them: in the fer-
This paper is organized as follows: in Sec. I, we presentnionic model, quantum fluctuations are so strong in the
the model and the relaxation bath coupled to it. In Sec. lilJargeN limit that the spin glass ordering is destroy&¢he
we present the dynamical larde-equations for the retarded critical temperature vanishes whahdiverge$?), whereas in
and Keldysh correlation functions and we explain theirthe bosonic model, a spin glass phase exists at low
derivation and how to deduce them from the simplertemperaturé-??In the following we will focus mainly on
imaginary time equations. In Sec. IV, we present both arthe latter one and we briefly discuss some results for the
analytical and a numerical analysis of the dynamicalformer one at the end of Sec. IV. In the model we study, the
equations. Numerical evidence for aging and for a generalsizeSof the spin is a fixed, tunable parameter which controls
ized fluctuation-dissipation theorem in the aging regimethe strength of quantum fluctuatiof@nceN= o it is more-
are presented. Moreover the analysis of the aging regimever continuous Let us emphasize that tHé—o limit is
justify the “marginality condition” used in previous not the classical limit: as shown in Refs. 21, 22, the model is
works?1?2Finally, in Sec. V, we briefly discuss the effect of classical for larges (but not a very low temperaturewhile it

a finite coupling to the relaxation bath. is “more quantum”(i.e., the quantum fluctuations are more
importan} at low Sand displays a quantum critical point at

II. THE HEISENBERG SPIN GLASS S=0 where the spin glass temperature vanishes.
AND THE RELAXATION BATH Moreover, it is important to remark that the real physical

object is the spirg, not to the bosom or the fermionf which
The model considered in this paper is a quantum Heisenshould be considered here more as mathematical tools. Tech-
berg spin glass on a completely connected latticé/afites nically, this leads to a simple)(1) gauge invariance of the
with quenched disordered couplings/+VN which are in-  bosonic or fermionic theorgwe can always multiply the or
dependent random Gaussian variable of zero mean andthef by a phasewhose consequences will be explained later.
varianceJiZj/(M\l)zJE‘/(j\/N). Each spin is linearly coupled Let us now discuss the role of the relaxation bath terms in
to a thermal bath. Moreover, we generalize 8#(2) spin  EQq. (1). Its presence is necessary to allow the energy dissi-
symmetry group taSU(N) and we take the largdl-limit. pation. It guarantees the relaxation toward equilibrium above
This generalization allows us to obtain a tractable modethe dynamical transitiomy and it is required to obtain an
which still has highly nontrivial quantum effects and repro-aging regime belowly. In this paper, we are mostly inter-
duces qualitatively well the known results for t8J(2)  ested in thelg—0 limit, which must always be takeafter
model, as far as it has been possible to compareNtse the long time limit: for example, the dependance of the equi-
and theN=« case£}?219The Hamiltonian reads: librium state inJg is expected to be smooth in this limit,
although the transient time toward the equilibrium diverges.
1 .. Js . . . The bath we have considered in Efj) is supposed, as usual,
H=—— > 3;S S+ ——= > S Siu+Hgarl(S), to be very big and always in equilibrium at a finite tempera-
VAN ) Ny ia @ ture T=1/8. For further simplification we take independent
baths from site to sitdabeled byi), and the spins; carry an
where the scaling of the spin—spin couplings and the antiferadditional degree of freedom, with 1<a<N+y (wherevy is
romagnetic spin-bath coupling has been chosen in such aconstant which ensures that the bath is much bigger than
way to obtain a sensible largd/, N limit, i.e., J3,Jg  the spins to which it is coupled. Moreover, we will make the

094414-2



OUT-OF-EQUILIBRIUM DYNAMICS OF A QUANTUM.. .. PHYSICAL REVIEW B 65 094414

assumption of factorized initial conditioRl By this we mean  evolution of the quantity starting from the initial condition at
that the initial density matrix is a product of an equilibrium t=0. Moreover, in this paper, we taltie=1.

density matrix for the bath and an initial density matrix for  In the following, we first derive the Keldysh action, we
the system. Sinck (or f) is not the physical object, the bath average over disorder and we take the laxgkmit; then we
should respect th&J(1) invariance, i.e., it must couple to recall the so-called “Larkin-Ovchinnikov representation”
two b’s and we do not consider baths coupling linearlybto and we express the dynamical lafyesquations in their final

in this paper. Of course many different choices are possibldorm using the retarded and Keldysh functions of the bosons

We first consider a “generic” bathH,,(s) of interacting R andK from which one can obtaiiRs and Cs. It is not
spins§ and expand the Keldysh effective action frat possible to obtain tractable equations for the physical quan-

second order in the coupling constdit(the first order van- tities Rs and Cs directly, contrary to rotor$ or p-§p|n§5
ishes. In the dynamics, the bath will then appear only models, and th.at makes the proplem more complicgtéd.
through its susceptibility, (see Sec. I)l. This approach is we s.tart using a Keldysh action defined on the double
appropriate when we only consider the bath as a device tgontour:

provide thermalization. One could wonder how correct is to

study a low temperature glassy phase using a perturbative S—Sf S i 2
treatment of the coupling to the environmental heat bath. In =SS 'a:+’_ a 0 ) \/_
Sec. V we will show that this is not a limitation and we will

—=S}(1)-S(t)

briefly discuss the simplest type of spin bath which will turns .
out to be a Kondo bath. 2 S SE() + Hpan(SP(1) | 4
fy r
[ll. THE DYNAMICAL EQUATIONS In this expressiona= * denotes the upper/lower contour,

S; are the Berry phase on the upper and lower contdurs.
Cafter the average over the disorder we take a saddle point
over the number of sited/. Hence, we get a self-consistent

infinity forward and backward, respectively. In the cIassicaIprOblem[Some scalar products have been explicitly written

limit, this method reduces to the Martin-Siggia—Rose-W'th SU(N) indices for clarity:

DeDominicis-Janssen formalisitsee Appendix C of Ref. . 12

2_5()). We take an infinite temperature initial Cond|t|on.tat S.=Si—S;— D abf j dtdt'—- > 8238';5('[’)
=0 and do a instantaneous quench to temperaturéhis ab=+,— 0 2N 4gys

means that the initial density matrix for the system is simply b oes

the identity operator. As a consequence the initial density X<Saa(t)séy(t )>S€

matrix, which is a product of the equilibrium density matrix

of the bath and the infinite temperature density matrix of the

system, does not depend on the disordered couplings. There- a
fore, as in the classical case, there is no need to introduce

In order to study the real time dynamics, we use the
Keldysh method the time evolution operator is written as a
path integral over 2 times, andt_, running from O to

( S(t)-s2(1)

replicas to compute disorder-averaged quantities. H 2t 5
The quantities we want to compute are the averaged re- bar S(1)) | ®)
sponse and correlation of the spin, which are definedhes
spins are on the same 3ite where( - >55 means the average over the single site action Eq.
5.
, At this stage, it is useful to define the spin correlation
Rs(t,t")= —9(t t')(S(t)- ~S(t')-S(1) functions in the so-called * representation:”
i ! 13 S Iy — l ~ _)b ! 1 b
v aEB O(t—t"){[Sap(1),Spalt) 1), Xap(tit )=Q<T5a(t)~5 (t )>s=@ QZB (TS3p(1Sga)s
(6)
Coltt) = &0 &) +31) &) 1
s, = —- . . , o o ,
2N? Xan(tt) =5 (TS S(t)) gan. (7)
— > (Sap(t)Spalt’)+S,4(1") Sp,(1)), where a,b=+ are the contour indices, anf is the time
apB

ordering on the double contou; )g.n denotes the average
(3)  with respect to the bath. Now, explicitly using tisU(N)
invariance of the theory, integrating out the bath, and ex-
where the bar denotes the average over disorder and thpanding to second order iy, we get an action only for the
brackets denote the “Keldysh average,” i.e., the Hamiltonianspins(summation ovew and 3 is implicit):
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Gau(t,t) Ga(t,t)

S p(t,0")=—T2abG Ly (1,t")Gy(t' 1)

Eab(t, V)= -7 -
a,t bt

Heis ’
PR

Heis Bath Y
Ha™ (t,) (1) +73abxC(Lt)G (1) . (1D)

FIG. 1. Feynman diagrams for the self-energy: the solid line is
the bosonic Green function, the dashed lines representsgttod sBathir )
the bath(we take a product of two fermionic functions, see fext
We see that the bath only enters though its susceptibility
x°. For simplification, in the following, we take a specific

S= Sg—S,;—i > abf fxdtdt’szﬁ(t)sba(t') form for the susceptibility of the bathy2(t,t")
2N 3p 0 =Go(1,t")GP.(t',1), where G® is the Green function of
X(Jﬁxgb(t,t')+J§X2b(t,t’))- ®) free fermions with a Lorentzian density of states at half fill-

ing (see Sec. |V for a discussion on the relaxation bath and a
justification of this formula
Until now, the derivation is correct for any value fand To simplify the analysis of the dynamical equations, it is
in particular forN=2. The great technical advantage of the useful to write them in a different way, using the so-called
largeN limit becomes manifest if one considers in detail the “Larkin-Ovchinnikov representation{LO) of the equations,
self-consistent single-site problem. In fact, because of thén which the(matrix) Green function is given by
presence of the Berry phase, the single-site measure defined
by the action Eq(8) is far from being simple. Indeed the 11 1)(Gsy Gi-\(1 1} (R K
single-site functional integral cannot be performed and as a GZE 1 -1/\6., G__Jl-1 1 “lo Al’
consequence it is not possible to obtain a closed equation for
the spin—spin correlation function. The larijelimit simpli-
fies the single-site measure and gives a set of closed equati¥fpere the retardettesponsg advanced and Keldysisorre-
on the two-point functions. Using the Schwinger bosons, thdation) two-times Green functions are defined by:

Berry phase contribution to E@8) reads: . ,
yP ®) R(t,t")=—i6(t—t"){[b(t),b(t")])

o : =G, (t,t")—G,_(t,t"), (13a
Sg=—, af dtb?" 9,b2 9)
me 0 Att')=+i6(t'—t)([b(t),b"(t")])
while the other part of the action can be obtained simply =G (L) =G . (t,t), (13b

replacingsiﬁ with its expression in terms of bosons. For a _

finite N the problems remains still very complicated since K(t,t')==i{{b(t),b’(t")})=G, . (t,t')+G__(t,t").
one has to integrate only on bosonic fields respecting the (139
constraint Eq(2b). Whereas in the largh* limit, which we  Note that our convention faR differs from the one used for
shall Study in the fOllOWing, the Surﬁabea/N does not RS- Moreover, we will use the relations:

fluctuate and this greatly simplifies the analysis. In particular

we can obtain the saddle point equations on the bosonic A(t,t")=R(t't)*, (19
Green functions, which in the: representation are defined

as: K(t,t')=—-K(t',t)* (15

to eliminateA and restrict ourselves to>t’. The (LO) rep-
Gap(t,t")=—i(Th,()bi(t"))s. (100 resentation is simpler because it uses the relatp,

+G__=G_,+G,_ to reduce the number of functions
The computation can be done explicitly, using the same dedust R andK) after thatA is eliminated using Eq(14) and
coupling as in the imaginary time equilibrium computation, because it makes the causality of the equations explicit. In
as explained in Ref. 22. Here we present a faster derivatiorthe (LO) representation the Keldysh indices structure of the
noting that the same diagrams for the self-energy derived inertices are particularly simple: the two-leg vertexsjg,,*
the imaginary time computation appears in the Keldysh forwhich leads to a simple Dyson equati@® '=G,'—3
malism: a first diagram, corresponding to the spin glass infwhere the inverse are just matricial inversemsd the four-
teraction itself, and a second one, corresponding to the codeg vertex used in Eq11) is (1® oy +0,®1)/2, where 1 is
pling to the relaxation batfsee Fig. 1 Thus using Feynman the 2x2 identity matrix ando, is the usual Pauli matrix.
rules in the* representation, we find immediatelghe fac- Remarkably, this vertex factor is fully symmetric in the
tors can be checked against Matsubara computations: sé&&ldysh space. Hence, a quick way to switch to th®)
Appendix A): representation is to recompute the Feynman diagréesas
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Fig. 1) with the (LO) Feynman rulegalthough a direct com- Finally, we now derive the expression for the response
putation using just the definitions is possible but more te-and correlation functions for spins defined in Eg). In the
dious. After these manipulations, we finally obtain the main N— o limit, Cg andRg can be easily computed froR and
equations of our papdfor t>t'): K using the relations:

*The Dyson equationgEq. (160 is rewritten to involve
only functions fort>t"]: , i . . -
Re(t,t') = N7 aEﬁ (St(1)(Sha(0) = Sg,(0)))

t
igR(t,t")=05(t—t )+Ldu2R(t,u)R(u,t ), (163 IM(K(LER (L)), (173

t
KL= [ uSataiun) Coltt) = 3 (S1p(0195.(0)~,4(055,(0)

t/
.y 1
+jo duZk(LWRI(Lu) (16b = KO [RE)2=[RA" D)]?).

(17b

To derive Eq.(17a, we used Eqs(2a), (2b), the SU(N)
invariance, the limitN— oo (to drop subdominant termsand
the relations betwee6, , andR, K, A that invert Eq.(134a).

Equations(16) describe the dynamics of the quantum
Heisenberg spin glass in the larijelimit, coupled to the
bath. In the following sections, we present an analysis of

these equations both in the paramagnetic regime and in the
(160 . . .

aging regime, together with some results extracted from a
numerical solution of this systems. Let us first make a few
preliminary remarks:

(i) Contrary to the quantunp-spin problem studied in
Ref. 25, there is no need here for a Lagrange parameter as-
sociated to the constraint. This is due to the fact that the
constraint Eqg.(2b) commutes with the Hamiltonian and

:fthER(t,U)K(U,t,)+ft,dU(EK(t,U)
t’ 0
XR*(t',u)—2x(t,u)K*(t",u)). (160

*The boundary conditions, which derive respectively from
Eqg. (2b) and the commutation relations of the boson:

K(t,t)=—i(2S+1),

lim R(t,t")=—Ii. (16e

t~>('[’)+

*The self-energy in LO representatifthese formulas are
local in times, so the argument,{’) has been omitted for

clarity} hence is conserved in the time evolution. Indeed one can
3 =3 Heis| v Bath (160 pheck that Eqs(16g), (16h), (16i), (16j) and (16a, (160
imply:
Heis__ ‘]a 2 2 dK(t,t) d
Tr = 7 ((RF-[KFHR+(RTK=K*R)K), S MK ()2 =0. (18)
(169 t ot

Thus if the boundary condition is verified fae=t'=0, it
will propagate at all later times.
Formally, one can introduce such a parametein the
(16h) equation, by replacingd; by i d;+ \, but it can be removed
using a U(1) gauge transformation K(t,t"),R(t,t")]
J2 SRR ]=[e MK (t,t),e MK E) ]
Bath__ B * *
2R :Z((|R0|2_|K0|2)R+(R0 Ko=KgRo)K), if K,R are a solution of the equations with [K,R] are a
(16i)  solution withA=0. This symmetry comes from the fact that
we represented the spfthe physical objegtwith the bosons
J2 (a mathematical topland that the bath couples to the spin
EEathEZB((lROF—|K0|2)K+(R§ Ko~ K§Ro)R), and not to the boson, and thus cannot break the symmetry;
(16)) this has an important consequer(see ij.

(i) In equilibrium, the spin response and correlation
whereR, andK, are defined in the same way tHatandk  functions are related by thguantum fluctuation-dissipation
starting from G2 ,. This expression emphasizes the very'elation (QFDR):
similar structure of the two terms in the self-energy: more
geréerally,othe bath term rea&('?%athocxﬁRnLX%K and 3 Bt Re(7)=1i G(T)erWd—wexp(—iwr)tan)‘('B—w) Cu(r).
«xgrR+ xkK, where yg and y are the retarded and the — T 2
Keldysh part ofy°, respectively. (19

.33
ses= - JHIRP= KK+ (REK-KRIR)
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It is important to notice that instead the boson response ant 0.08 L e a—
correlation function®k andK are not in principle related by = Ry(t,+T.t,)
this QFDR. Technically, this is due to thé(1) invariance -
explained above: if K(t,t"),R(t,t')] satisfies QFDR Eq.
(19), [K,R] will not in general. Imposing QFDR for the 0.04
boson demands that takes a precise valuk,. However,
this is not a problem since the only physical objects are the
spin response and correlation functions. When using the
Matsubara imaginary time formalism, one does not face this 0.02
difficulty, since one automatically requires the QFDR to be
satisfied, because of th@-periodicity of the imaginary time
boson Green function. Thus when we will analytically con-
tinue our equations in imaginary time to compare to Matsub- 0
ara computationgsee Appendix A we will have to reintro-
duceh,.

(iii) The presence of the thermal bath is clearly required: FIG. 2. Spin response as a function of for t,
for Jg=0, the solution of the equations has the property=1.5,2,2.5,3,3.5,4,4.5,5,10,15,20,2fom bottom to top {max
K(t,t')=(2S+1)R(t,t") for all t,t’ [this can be check order =100)], Jg=Jy=1, S=1 and T=10 (inside the paramagnetic
by order in the coupling constangy, and Jg, using Egs. pha.s.e. {-\fterat.ransient time .the response converges to a stationary
(169, (160, (169), (16h), (16i), (16)] and it is clearly incor- equilibrium regime. Inset: spin correlation as a functionrdér the
rect (for example, it can not satisfy the high temperatureSame parameters.
limit of the fluctuation-dissipation relation

(iv) We can immediately generalize these equations in th
fermionic case by changing— —S,J3— —JZ (Sis the size
of the “fermionic” spin, and the sign change in front of the
coupling constant comes from the fact that there is now
fermion loop in the diagrainWe will see in Sec. IV that this
simple change leads to the disappearance of the aging ph
nomena, as expectéd.

8 10

QFDR s violated and the aging phenomenon apptafs.

We remark that if one takes the long time limit and then sets
the coupling to the bath to zero, then the dynamical solution
agets back to the equilibrium foF >Ty only. For T<T, the
system never reaches a stationary solution. However, the
pseudo-equilibrium solution reached in the time sector
t—t'~O(1l)<t’ can be also obtained by a pure static
computation using the marginality prescriptionin the fol-
lowing, we will takeJg>0 (Jg=1 for numerical computa-
tion). In Sec. IV, we will discuss what happens when chang-

In this section, we present the solution of the dynamicafng the value ofJg.
equations(16) using both numerical and analytical results.
Indeed, these integro-differential equations are causal, so one A. Equilibration into the paramagnetic state
can construct the solution step by step in time. This property - a¢ high temperature, the numerical solution shows, as ex-
IS very genera(see Ref' 25 fOT another examphnd itis the pected, that the system equilibrates into the paramagnetic
basis for the numerical algorithms, although in this problemyiaie after a transient timtg,: for t,t'>t., the response and
some new technical refinements are needed in order to COMyralation becomes a function o#t—t?qonly and they are
pute an accurate solution at a reasonable cost in cOmMputas | taq by the QFDRsee Fig. 2 This is indeed what we
tional time (see Appendix B for a detailed discussioihe btain from the analysis of Eq$16a, (160 in the limit
numerical solution shows that the model has a dynamic t' oo with 7=t—t' fixed. In this Iim'it the equation ok
phase transition at a temperatuig(S,Jg) between a para- andR can be easily written in Fourier spagege reintroduce

magnetic phaseT(>Ty) and a glassy phasd € Tg), as ex- the A term, in agreement with the discussion at the end of
pected on general grounds and predicted in Refs. 21, 22. AL, . 1: ’ g

high temperature, the system equilibrates inside the para-

IV. SOLUTIONS OF THE DYNAMICAL EQUATIONS

magnetic state: after a transient time all the two-time quan- R Yw)=w+A—Sg(w), (203
tities become time-translation invariaffTl) and the quan-
tum fluctuation-dissipation relatioci@FDR) holds. Instead at K()=3(w)|R(w)[% (20b)

low temperature the system never equilibrates on finite

timescale¥ and one can identifies two different time sectorsAs in Ref. 25, it is possible to show order by order in per-
on which the two-time functions evolve: whehis large but  turbation theory that these equations admit a solution such
the differencet—t’ is of the order of one and very small that the spin correlation and response functions satisfy
compared tot’ the system seems to be equilibrattle  QFDR. In Fig. 2, we plot the spin correlation function
QFDR is approximatively verified and all the one-time quan-C(t,,+ 7,t,,) and the response functidRg(t,,+ 7,t,,) as a
tities, as the energy or the Edwards-Anderson parametefunction of = for differentt,, for Jg3=1, Jy=1 andT=10.
have almost converged to their asymptotic valuelewever,  These figures represents the typical behavid€ 9ndRg in

on larger timescales, when-t' is of the same order df,  the paramagnetic phase: after a short transient time the func-
an extremely slow dynamics sets in. In this regime thetions become TTithey do not depend ofy, anymore and
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In principle, one would like to take a small, so that it
Ry(®) allows the system to relax but does not change the value of
0.05- . the paramagnetic state. However, the relaxation time di-
verges whenlg goes to 0, even in the paramagnetic state,
and this prevent the numerical program to converge towards
the solution in a reasonable amount of time. We found that
Jg=1 is a good compromise. Indeed the imaginary time
computation shows that the resultsJat=0 are close talg
=1. This relatively big value reflects the fact our bath, cou-
pling to the spin degrees of freedom, is not very efficient. A
more precise discussion will be given in Sec. V.

0.025

-0.025 — -

-0.05|- .
B. General properties of the glassy dynamics

10 5 0 5 10 The numerical results and the analytical analysis of the
® dynamical equations indicates that the system remains al-
ways out of equilibrium at low temperaturd <T,). In the

FIG. 3. Fourier transform of the spin response functidoty  following we present the Ansatz which gives the asymptotic
compared to its expressio(continuous ling computed by the splution in the glassy regime and we compare it to the nu-
QFDR from the correlation fodg=J,=1, S=1, ty>10, andT  merical results obtained integrating the dynamical equation
=10 (inside the paramagnetic phasdhe excellent agreement nymerically. This Ansatz is a slight generalization of the one

shows that the system is fully equilibrated. introduced by Cugliandolo and Lozafidor quantum glassy
systems, which is itself a generalization of that discovered by

they decay quickly as a function of Moreover, in Fig. 3, cygliandolo and Kurchan for classical glassy systdms.

we plot the retarded function computed directly from the
numerical solution and from the correlation function using 1. The weak-ergodicity breaking and the weak long-term

the QDFR. The excellent agreement shows that QFDR is memory Ansatz

satisfied and the system has relaxed to equilibrium. , . , )

This asymptotic solution represents the equilibrium dy- !N the long time limit ¢,t">1) we make the following
namics inside the paramagnetic state and it exist only abov"Saiz for the behavior of the bosonic correlation and re-
Tq4. At T=T, the equilibration time diverges and remains SPOS€ functiort:
infinite in all the low temperature phas&{T,), as clearly

- . ) ) h(t' . ,
indicated by the numerical solutigeee Fig. 4 The study of K(t,t")=|Kg(t—t") +Kag ( )) }e—lw—t ),
this regime is the subject of the next subsections. h(t) (213
T h'(t)  (h(t!)
< T T T T ’ t/ tr . ,
CS(tW+T,tw) Cs(tw+1-'vtv1v.)5_ ] } R(t,t’)z|:RST(t_t’)+ hgt) RAG( h((t) ):|e—|)\(t_t )'
150 w L - (21b
I limKg(t)=0, (219
t—o
Ks(0)=—i(25+1)+ig, (210
Kac(0)=0, (218
Kac(1)=—ig, (21f)
G 3 @  m  whereh(t) is an increasing function of h’(t) is the first
T derivative ofh(t), g is a real numbéf andg?/4 is equal to

FIG. 4. Spin correlaton as a function of for t, the Edwards_And?r.Son parametgy, . Note the p’hySICS hid-
=15,29...,95[from bottom 10 top {ya=100)], Jg=Jy=S=1, den in t_h|s_Ansatz. in the _tlme_ regime in whith are _Iarge
and T=0.1 (inside the glassy phaseThe height of the dotted but th_e|r difference remains finitecalled TTI-regime in the
straight line equals the Edwards-Anderson parameter compute@!lOWing) the system seems to have reached a stationary
within the static formalism and coincides well with the plateau State, however on a timescale diverging with’ [t,t" are
value. The aging behavior is explicit. Inset: zoom of the spin cor-large but the ratich(t')/h(t) remains finité there is a sec-
relation as a function of on the time interval corresponding to the Ondary evolution called agingThis unveils the interpreta-
stationary regime fot,,=5,10,25,37.5,50,75 from bottom to top. tion of h(t) as a self-generated effective timescale.
The curves show a clear convergence toward a TTI stationary re- Moreover, we notice that if this scenario is realized for the
gime. bosonic correlation and response functions then it will be
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also realized for the spin correlation and response functions It is important to note, as pointed out in Ref. 25, that in
and for the self-energies. The presence of the oscillating exhe quantum case the GFDR is expected to become classical.
ponential is a slight generalization with respect to Ref. 25The argument is the following: if o is finite then the Fou-
and it could be gauged away, as discussed before. Moreoveier integral relating the correlation and the response is domi-
when one computes thepin correlation and response func- nated byw=0. Hence, one can develop the hyperbolic tan-
tions these exponentials cancel. gent recovering back a classical generalized fluctuation-
The second key ingredient that makes the asymptoticlissipation relation, which in our cagr sping reads:
problem tractable is the assumption tok weak long-term
memory property?° that allows one to decouple the transi-
tory regime from the asymptotic one. In fact, the dynamical
equations contains explicit memory terms which couple al
the timescales. So, how can one analyze the asymptotic r
gime without solving the complete problem? Within the 1
weak long-term memory scenario tkidnean response to a R&C(u)= T—(C’QG)’(M), (24)
finite time perturbation vanishes in the long time limift( eff
—), whereas the response to a perturbation which acts owhere u=h(t’)/h(t). Moreover, this has been argued to be
infinite timescalegi.e., diverging ag,t’) is finite. More pre-  generically true for models with simple commutation rela-
cisely: tions (particles and rotopsin Ref. 30 since the dynamical
equations are fixed point of the re-parametrization group of
t* t time transformations and thenormalizedaging dynamics
Iimf R(t,u)f(u)du=0 but Iimj R(t,u)f(u)du+0, becomes classical at the fixed point. The quantum mechanics
t—”0 e enters only as a renormalization of the coefficients of the
(22) dynamical equations. We will show that this is also the case
. . . . for our system which is characterized by nontrivial commu-
thgrgf(t) IS a gen?nc f’unctlon. Therefore the dynamlcs.ontation relations between the spisontrary to the case of
infinite timescales” (,t'—) decouples from the transi- rotors or particles However, the behavior next to the quan-

tory regime. tum critical point is still uncleatsee Sec. VL
Finally, we note that more general Anza with a set of b ( -V

different diverging timescales have been used in the context
of classical®*’ and quanturif glassy systems. However,
these types of solutions are physically and technically related The numerical procedure used is described in Appendix
to a full replica symmetry breaking solution in the thermo- B. It turns out that the problem is more difficult to solve than
dynamical analysis. For systems characterized by a one stéhpe classical ones or the quantyrspins model, because the
replica symmetry breaking solution in the thermodynamicsdynamical equations are for the auxiliary bosorand not

as the model we are focusing in Ref. 21, one generally exdirectly for the physical spirs. As clearly indicated in the

1
Rs(t,t’)zﬂé’t/CS(t,t,). (23)
e

t[_his becomes a relation between the aging functions:

C. Numerical results

pects only one diverging timescale. Ansatz, even in the aging time-regime where the spin corre-
lation and response function evolve very slowly, the bosonic
2. Generalized QFDR functions oscillate wildly. The numerical solution thus de-

A tstandi hvsical W of th totic d mands a more sophisticated algorithm, inspired from well-
n outstanding physical property of the asymplolic dy=\ vy methods to solve one variable differential equations.

nﬁg"fal icgulgorsﬁgr:s%vgig In then(t:lan?smal czsecby nC ung_ll— The numerical results support and validate completely the
andoio a urehana € quantum case by Luglian- . ;¢ equilibrium scenario encoded in the Ansdg&ec.

5 ; ; ; '
dolo and Lozan@? is that in the aging time-sectft, t’ and IVB 1). In the following we present the results fof=1,

:j_ td :llretlar?_e bgt the r?t'b(t |)/'?(t) _staysl f'tn'éébthftﬁtan' Jg=1 and a temperature well inside in the glassy phEse
ard fluctuation-cissipation reiation 1s violated but there ex-_q 4 Figs. 4 and 5 we plot, respectively, the spin corre-

ists a generalized fluctuanon dissipation fe'a"@FDR) b.6' lation function Cg(t,,+ 7,t,,), the spin resonance function
tween the correlation and the response functions which h o :

. . s(ty+ 7. t,), and the spin integrated response function
the usual functional form of the FDRyeneralized to non- to+ T .
TTI functiong and in which the temperaturE is replaced  X(twt 7 tw)=J{" "dSRy(ty+7,5) as a function ofr for
with an effective temperatur@.; .2°> Two remarks are in different values ot,,. We remark that a pseudo-stationary
order concerninglos . First, a physical one: the effective regime sets in forr<<1 with a plateau, whose height is the
temperature has a real physical meaning of tempefdtureEdwards-Anderson parameter. lts valugg{=0.88), com-
since is what a thermometer, whose reaction time equals thguted from the static analysis by the marginality prescription,
timescales on which the aging evolution takes place, woulds represented with a dashed line in Fig. 4: this shows very
measure. Second, a technical one. The effective temperatugeod agreement between the two methods.
T is related to the breaking poimtarising in the replica Moreover, the fact that correlation and response are re-
symmetry breaking solution of the thermodynamics, i.e.lated by the QFDR in this time sectdisee Fig.  nicely
Ter = T/X. A general argument to show why one expects thisshows that this is indeed a pseudo-equilibrium regime.
to be true for a very large class of classical systems, included On a longer timescalet,, the aging behavior sets in as
finite dimensional systems, has been presented in Ref. 42.clearly indicated in the two figures. The integrated response

094414-8



OUT-OF-EQUILIBRIUM DYNAMICS OF A QUANTUM.. .. PHYSICAL REVIEW B 65 094414

2 T T T—T—T—T—T—T—T—T— T T T T T
2 T T T T C ' T
Ry(t,+ut,) | ATl ] St Tl -
15H 1.5+ 4 |
08 |
1 |-
il ]
0.5- 1] 06 .
051 1 I I L 7
% 1 2 3 7] 5 04 i
I 1 i
ok ?g
02} i
i 1 L ! I
o5 0 2 4 6 8 10
0 5 10 15 20
r/tW

FIG. 5. Spin response as a function of for t, FIG. 7. Spin correlation as a function of/t, for t,

=5,10,25,37.5,50,75from top t0 bottom {mna=100)], Jg=Jy  —1520...,95[from bottom to top {ma=100)], Jg=Jy=S=1
=S=1, andT=0.1 (inside the glassy phaseinset: zoom of the andT=0.1. These are the same curves plotted in Fig. 4 but with

integrated response as a functionobn the time interval corre- eSpect to the variable/t,,. The excellent collapse strongly sug-
sponding to the stationary regime fgg=>5,10,25,37.5,50,75 from gests that the functiom(t) (present in the dynamical Ansatz
bottom to top. The aging behavior and the weak long-term memorghould be equal to
scenario are explicit.

one diverging timescale, because of the form of the FDR and
and the correlation evolve more and more slowly increasinghe GFDR, one finds a two straight line plot whege
ty . Note that the behavior of shows explicitly the weak o —(1/T)Cg for gga<<Cs<C(t,t) and y= —(1/T)Cg for
long-term memory scenario: even if the response vanish iI0<Cg<qg,. In the quantum case the situation is more in-
the aging time sector the integrated response does not. Thergelved since in the stationary regini and Cg are related
fore the magnetization response to a constant and small magy the QFDR, therefore one does not expect thatdfex
netic field switched on at, depends always explicitly oy, <Cg<K(t,t) the plot should be very useful. However, as
and becomes slower increasitg. Moreover, we note that discussed in Ref. 25, in the aging time sector wheteQ}
the numerical results strongly suggest thét)=t. Indeed <(qg, the GFDR becomes classical and one should recover a
the different curveLCq(t,,+ 7,t,) collapse very well on a straight line for y whose slope equals the inverse of the
single curve[Kag(w)] when plotted as a function oft
+7)/t,, (see Fig. 7. We have also verified the correctness of

. . . q
the GFDR hypothesis. In Fig. 8, we show a parametric plot 2 r~ — |
of xy as a function ofCg for different values oft,,. For (
. Y . XS tW+Tvtw) L A
classical systenghe limiting curve(for t,,—) is very use-
ful to characterize the aging behavior. For systems with only 15k i

1 . . , . , . i

N eff
R(® | ] i & N ]

L =-1lc+ t
T cons

0.8
0.6

0.4

| 0 ' I ' I1 ' 1 !5 ' 2
7] ColtytTty)

FIG. 8. Parametric plot of the spin integrated response as a

function of Cg for t,,=40,45,55,60,65,70t{,,,=100), Jg=J4=S
. | . | . | . =1 andT=0.1(inside the glassy phaserhe collapse predicted by

025 1 2 3 4 the dynamical Ansatz is good. The vertical dotted straight line in-
dicates the values of the Edwards-Anderson computed within the
static formalism. The dashed straight line has a slopBT,

FIG. 6. TTI part of the spin response functiiotg compared where 1T .=x/T and x has been computed within the static for-
to its expressioticontinuous ling computed by the QFDR from the malism. The curves clearly show that the generalization of the fluc-
correlation fordJg=Jy=1, S=1, t,>10, andT=0.1. tuation dissipation relation holds in the aging regime.

0.2
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_ T T T IO L) (h(t))

SO L ey ] Aﬂ'['ljod“ ho R | heoy ) <4el hew
i e h(u))h'(u) . (h(u))
- +t'ﬂjod“2K(h<t> At TAS| ht)

0.2

_igjo dt,EgT(t,)'*_EolzJ'o dt/RST(t/)-I-i)\g,

(27)

- - . - where we have used for the self-energy the same notation
T introduced in Eqs(21a), (21b), andXx=32%(1). Since we
have definedKg{(t) in such a way that it vanishes in the
FIG. 9. Spin correlation as a function efin the fermionic case |ong time limit, A has to be equal to zero. Note that this
for t,=12,14...48 {ma—=100), Jg=Jy=1, S=0.5, andT=0.1.  gyerall equation couples the stationary and the aging regime.
Inset: Spin correlation as a funct_lon. ofin the bosonic case for .the As in the paramagnetic case, one can skordler by order in
same val_ue of the par_ameter. Thls_flgure clearly shows th(_e e’_"Sten‘f?erturbation theorythatRgr andK s satisfy the QFDRand
of aging in the bosonic case and its absence in the fermionic OnethereforeRST,CST’ t00). It could seem that the procedure to
fix \ is different in the two cases. In fact in the paramagnetic
effective temperature. This is indeed what we find in Fig. 8,case one choosesin such a way that the QFDR is verified
where we compare the behavior gf at low Cg with a  for bosonic functions, instead now is such that the corre-
straight line whose slope isTldz =x/T. x is the breakpoint lation and response functions do not oscillate in the large
in the one-step replica symmetry breaking solution obtainedime limit whent—t’ andt,t’ are very large. But the two
(for the same value of the paramefergeneralizing the Vvalues of\ are the same an asymptotically oscillating func-
analysis performed in Ref. 21 to taking into account the prestion cannot satisfy the QFDR relation.
ence of the batlisee Appendix A As a conclusion, the stationary equations can be fully in-
Finally, we can obtain the equations for the fermionicterpreted as equilibrium dynamical equations. Indeed it has
model by the simple changé—>—S,JE|—>—JE| in Eq. (16) been shown in the classiéaand recently in the quantum
as discussed previously. Numerically solving these equatior@asé® that this type of equations represents the pseudo-
we have found no glassy behavior as predicted in Ref. 34equilibrium relaxation inside the marginally stable TAP
Indeed we show in Fig. 9 the spin correlation function in thestates(local minima of the free energy landscape whose Hes-
fermionic case, which does not show any aging behavior a$ian is characterized by a vanishing fraction of zero mpdes
low temperature, whereas the same calculation for bosorl§posing the marginality —condition in the static
(with the same parametgrslearly does. computatioR? is equivalent to consider a Boltzmann mea-
sure restricted to the marginally stable TAP states. It is for
this reason that one can get information about the out of
D. Analysis of the stationary regime equilibrium dynamics by a purely equilibrium computation.
However, it is important to understand that E¢&5), (26),
(27) do not really represent an equilibrium relaxation. Be-
cause the marginally stable TAP states have a vanishing frac-
tion of zero modes, the system find always a way to “es-
cape” to these states, even if more and more slowly and this
gives rise to the aging behavior. Hence, the physical mecha-
nism inducing the slow dynamics is not an activated jump
dynamics across some energy barriers but it is an entropic
. effect. The slow dynamics of the system is due to the fact
(io+ )\)RST(I)ZJ dt'SST(t—t")Rer(t')+ S(t), (25) that the longer is the time the smaller is the number of di-
0 rections along which the system can escape. Finally, the fact
that the marginally stable TAP states dominate the off-
equilibrium dynamics whereas they are not relevant for equi-
+o0 librium properties helps to understand why the dynamical
(ir7+)\)Ks1(t)=J dt’S3T(t—t")Kge(t') transition temperature is different frofactually is larger
o than the equilibrium transition temperature. In fact after a

We focus now on the time sector in which the difference
betweert andt’ stays finite and,t’ are very large. Hence, in
Egs.(21a, (21b) the aging part does not evolve and is zero
for the response and equatdg for the correlation. Plugging
the Ansatz Eq9219), (21b) into the dynamical equations we
get:

+oo quench, the system is almost trapped in those minima and

+f dt'SRO(t+t)RE(L) +A, thus displays the aging phenomenon at long time. The local

o minima responsible for the slow dynamics appear at a tem-
(26) perature higher thaiiq, thus Ty>Tgq. The activated dy-
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namics which would probably restore the equality= T is

PHYSICAL REVIEW B 65 094414

(4) The correlation and response functions are supposed

on timescales diverging witN, completely unaccessible to to be related by the GFDR in the aging regime after that the

our mean-field analysis.

E. Analysis of the aging regime

Let us now focus on the aging regime, igt’, and also
t—t’ are large but the ratib(t")/h(t) stays finite. Note that

within the following asymptotic analysis one cannot find out
what is the functiorh(t).2?>3°This is indeed an open prob-
lem already for classical systems. However, the numeric

results(see Fig. 7 suggest that for our modéi(t) =t.
Plugging the Ansatz Eq$213a), (21b) into the dynamical

equations and after some manipulations similar to Ref. 25 W&y

get:
1dx
)\RAG(M)ZJ ?EQG(X)RAG % +33(0=0)Rag()
"
+3R%(u)Rsr(w=0), (29)
wdx X 1
)\KAG(M):fo ;EQG(X)RKG “ "’fo dXEéG(X)KAG(g

+33(0=0)Kag() + 2(1)RE( 0=0),

(29)
33
2RO(m) = = 7 (KRa( 1) Rig(1) ~ 2K (1) *Rac(10)),
(30)
35
28w = 7 [Kaa(m)[Ka(w), (3D
whereK ¢ satisfies the boundary conditid,g(1)=—ig

and we have used the notatigr=h(t")/h(t). It is important
to remark that:

(1) There is no bath contribution to the aging part of the
self-energy. This is natural and it is probably generally true
since the bath has always its own equilibration timescale,

therefore in the aging time-sectpt, t’ andt—t’ are large
but the ratioh(t’)/h(t) stays finitd the bath is always al-

exponentiake ') has been gauged out. In particular the
GFDR predicts thaRag(u) = — (i/2Tex) (Kag) ' (1) [in our
notation the GFDR for bosons has-d/(2T.¢) instead that
1/T.%]. One can indeed verify that this is really a property of
the aging equations: E@28) can be obtained by differenti-
ating Eq.(29) and using the GFDR. Moreover, we remark
that if the bosonic correlation and response functions verify

ailhe GFDR so do the spin correlation and response functions

s in Eq.(24): T is the effective temperature.
Evaluating the aging equations jr=1 and imposing the

existence of an aging solution, i.éR,g(1)#0 we obtain

o matching conditions with the stationary regifiethe

first one is

AG

R

A=33(0=0)+ Rsr(w=0)

n=1

(32)

Rac

and the second is the same one already obtained from the
long-time limit of the stationary equation, i.eA=0 [Eq.
(27)]. One can simplify further these two matching equa-
tions. Indeed, thanks to the GFDR E@g4), one can perform

the integrals on the aging functions & Hence, using the
zero frequency term of Eq25), we get:

Jli 2 RKG
—Ri{0=0)g?| |=— +2]=1, (33
4 Racl,_,
| S '9 SrRE(w=0)=0. (34
2Ty K97 Refw=0) KRerl@=0)=0. (34

Moreover, becausRgt is a bosonic response function in a
pseudo-equilibrium regime, its zero frequency component is
real and negative. Therefor&®{s/Rac)|,-1 is a real num-
ber equal to one or minus one that we will naten the
following andRg{w=0) reads:

Rsf(w=0)=— (35

2
IngV2+¢

Plugging this expression into Eq34) and using thaf

ready equilibrated and cannot give a nonconstant aging cor —i(J5/4)g°, we finally obtain the equation foFy . The

tribution.

aging solution corresponds tg=+1 ({=-1 implies

(2) The terms linear ifR (and higher have been neglected g°/T.;=0) and is characterized by the following equation:

in 3¢, whereas the terms quadratand highey have been

neglected inE’QG. This is due to the fact that they do not

give a finite contribution in the aging equations.
(3) As pointed out in the classical c&sand recently in
the quantum cas®, Egs. (28), (29), (30), (31) are re-

(36)

weled)

where we have replacarf=4qg, . Note that, replacing ¢

parametrization invariant. However, there is only one func-with T/x (wherex is the breakpoint in the one-step replica
tion h(t) reached by the system in the long time limit. This is symmetry breaking schemthis becomes the same equation
a general problem arising in the study of the asymptotic soebtained in Ref. 21 using the marginality condition.

lution of partial and integro-differential equations, called the

Indeed Eqs(25), (26) with A=0 and Eqgs(35), (36) and

matching problem. Until now different techniques are knownthe boundary conditioiKg{(7=0)=—i(2S+1)+ig are a
and applied to solve this problem for partial differential closed set of equations that completely determines
equations but its solution for the dynamical equations arisindst, Rsg, N\, Terf » ea- N Appendix A, we show that they

in the study of glassy systems remains an open problem.

are completely equivalent to the equations studied in Refs.
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21, 22 using the marginality prescription within a pure static k(L) f
t,t')=

t t/
computation. Finally, let us stress that, evenJif is not du UR(t,U)k(U,t')Jrfo duoy(t,ur(t’,u)*,

0

present in Eq(36), T.¢ depends odg because the Edwards- (39b)
Anderson parameter dependsqywvia Egs.(25), (26) which
contains explicitly this coupling constant. and their self-energy reads:
i
V. ROLE OF THE RELAXATION BATH UEe'S=WB;(RoK+KoR), (409

In this section, we briefly discuss the effect of the cou-

pling strength to the relaxation batly. In deriving Egs. i

(16), we took a generic bath and expand in second order in gEeiS:_B(ROm_ KoK). (40b)

its coupling constandz . Thus the equations we derived are 2\/;'

a priori only valid in the limit of smallJg . However, we will

show that our main equatiori46) also describe the dynam-

ics of a model with finiteJg in a extreme limit. Thus it is lim r(t,t")=—i. (41)

legitimate to study them fodg finite (there is no risk of ot

inconsistencies

The effect of the bath will of course depend on its precise It is not difficult to show that in the limit of an infinite

form. Two types of bath can be considered: baths that onlywumber of channej— o, these equations reduce to Ef6).

couple to the spin, and baths that couple to the boson or the However, for finite y, these equations are much more

fermions. In this discussion, we will concentrate on the firstcomplex than Egs16), since at low temperature the Kondo

kind, since the spin is the physical object, not the boson. Onecale appears and one has to deal with a problem with many

of the simplest possibility is to couple the spin to two fermi- different scales. This really increases the difficulty of a nu-

ons using the Kondo interaction. In order to take the la\ge- merical computation. However, one can extend rather simply

limit, we directly introduce theSU(N)XSU(Nvy) Kondo the previous analytical study and verify that the same dy-

model, withNy flavors, defined by? namical scenario continues to hold. In this paper, we re-
stricted ourselves to study Eq6l6) as a function of the
strength of the bathlg, using Matsubara formalism with

r should also satisfy the boundary condition:

1 . 2 . . . )
H=— > 3,5-§+ X  ecliuCua marginality conditiorf? We found that increasindg the spin
VAN <] 1=i=Nxe glass transition temperatuflg decreases monotonically and,

as far as we can solve the numerical equations, the transition

Js + is still second order, given by the conditior=1 (x is the
+_N\/— 1<2ﬂ<N SiapCkigCrrias (37)  value of the breakpoint in the replica formalisniHowever,
Y 1<iSNy the decrease of is slow and we could not reach numeri-

cally a point where it vanishes. Numerical computation can-
wherec are the bath fermiong, their kinetic energy, andg not, for the moment, decide whether there is a second order
is now the Kondo coupling. In the largédimit, one can still  phase transition until a quantum critical point at finlggand
find a closed system of equations, but at the expense of ifF=0 or the spin glass is not destroyed at zero temperature
troducing auxiliary fermionic Green functionsand k, as  until Jg=. As emphasized in our concluding remarks, this
explained, for example, in Ref. 43. The dynamical equationssituation is disappointing since we would like to study the
are similar to Eqs(16): Egs.(16a), (16b), (16d) are the same aging in the vicinity of a nonpathological quantum critical
and the bath term in self-energies E%6i), (16)) are re-  point for this model. Our interpretation is that this bath,
placed by: coupled to the spin directly, is not “efficient” enough and
that we probably need to couple to a bath with charge fluc-
Jﬁ' i\/;JB tuations by introducing holes in the model. Such a doped
Spr=-— Z((K2+ R?)R* —2|K|?R) — > (R§k—KGr), model is also interesting physically to study the destruction
(38 of a quantum spin glass by doping. Finally, let us emphasize
that solving numerically the model with the Kondo bath Eg.
(37) or a more general bath may lead to more interesting
Jﬁ 2 L2 U2 i \/;/JB . . results, such as an increase of the critical temperature and the
3k= = 7 (K[RIF=K*(R*+K%)) = ——(R5r =Kgk).  Edwards-Anderson parameter as the coupling to the bath in-
(38  creases from ¢!

Since the bath has now a proper dynamicandk should be VI. SUMMARY AND DISCUSSION

computed using new Dyson equations: ) . .
In this paper we have studied the out of equilibrium dy-

. namics of the quantum Heisenberg spin glass defined on a
F(t,t')= 5(t—t’)+J duog(t,u)r(u,t’) (393 completely connected lattice and coupled to a spin thermal
' t' ' Y bath. We have replaced ti$4J(2) spin symmetry group with
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SU(N) and we have considered the lafgelimit. This has  dissipation relation holds in the aging regime. In this paper
allowed us to have a more tractable model which, howevenve have shown that this is the case also for models with a
seems to capture some of the physics of $14(2) casé?  nontrivial spin algebra. These results seem to suggest that,
Thanks to the larg®} limit we have obtained a set of closed €xcept for the renormalization of the coefficients of the dy-
integro-differential equations on the correlation and responsBamical equations, the aging regime is not affected by quan-
functions. By the analytical study and the numerical integrafum fluctuations and the aging systems behaves classically in
tion of these equations we have fully analyzed the real timdheir slow evolution. But is this always true? Is it not pos-
(dissipative dynamics of the mean-field quantum Heisen-Sible to find “a quantum system which ages coherently™?
berg spin glass model in the largetimit. We have consid- Sln_ce, in general, thg decoherenc'e tlmg is finite anq the aging
ered a particular type of initial condition which corresponds'@dime takes place in the large time limit, a classical aging
to the physical situation in which, a=0" the system is at 'eégime is always expected to set in at large enough time.
equilibrium at infinite temperature and 0" becomes However, there is an important case in which this naive ar-
coupled to thermal bath in equilibrium at temperat@rghis ~ 9ument may fail. Near a quantum critical point the decoher-
corresponds to an extremely fast quench from very high tem&nce time diverges, therefor'e it could pe possible that at very
perature. Depending on the valueTofthe system has a very 1arge times(larger than the time on which the system enters
different long-time behavior. in the asymptotic regime an_d than the characteristic times-

At high temperature the system relaxes, after a finite?ale of the TTI regimg but still lower than the decohereng:e
equilibration time, inside the paramagnetic state. In thidime, the systenages coherentlyWe could not address this
stationary regime the system is at equilibrium and theV€ry interesting question for the quantum Heisenberg spin
fluctuation-dissipation relation holds. When the system ilass analyzed in this paper: the technical reason is that its
quenched below a certain critical temperatlige which de- quantum critical pow_lt is ra_ther_ pathological since it corre-
pends on the values of the spin and the system-bath couplin§Ponds to @ vanishing spin size. Hence, another type of
it never reaches an equilibrium regime. At large times two0del with a less singular quantum critical point has to be
time-sectors can be identified for the behavior of the correStudied. Work'is in progress in this direction.
lation C4(t,t") and responsdRg(t,t’). Whent andt’ are
very large, but their difference remains of the order of one, ACKNOWLEDGMENTS
the systems reaches a pseudo-equilibrium regime in which
the QFDR is verified. However, on a larger timescale, di-
verging with the age of the sys_tem—(t'oc_t,t'),_there IS @8 0096462 and the Rutgers Computational Grid for support for
secondary relaxation called aging. In this regime the quang,. numerical computations
tum fluctuation-dissipation relation is violated and the corre- '
lation and the response are related by a generalization of the
classicalfluctuation-dissipation relation characterized by an APPENDIX A: FROM REAL TIME TO IMAGINARY TIME
effective temperature different from the bath temperature. In this Appendix, we give explicit formulas for doing the

Moreover, we have also studied the role of the bath. Firstyick rotation to imaginary time in equilibrium. Let us de-
we have taken a linear coupling of the spin to the bath, wejne:
have developed to the second order in the coupling constant
and integrated out the bath spins. In this way we have found
a generalizaton of the Feynman-Vernon influence [G](I)E{
functionaf® for spins in which the properties of the bath
enters only through its susceptibility. All the numerical studyWe note that this function has a simple expression in terms
has been done in this case. However, we have also considf the spectral densitgusing equilibrium FDT:
ered a more general type of bath and we have shown that a
“simple” one turns out to be a Kondo bath. We have ex-
tended the analytical study to this case and have shown that
the previous dynamical scenario continues to hold. Further-  [G](t)=
more we have unveiled that the way we have followed pre- —if dep(€e)ne(e)e "¢t for fermions
viously to treat the system bath coupling can be recovered as
a limiting case of a Kondo bath. Finally, we have also veri-
fied numerically that, as far as we can go increasing the _iJ dep(€)ng(e)e'et for bosons
coupling to the bath in Eq5), the dynamical transition re- [&](t)=
mains of second ordeby this we means that the asymptotic ) ) )
dynamical energy is continuouand the critical temperature 'J dep(e)ne(e)e'  for fermions,
does not vanish.

The most striking features of the low temperature out ofwhereng(e) and ne(e) are the Fermi and Bose function,
equilibrium dynamics are the aging phenomenon and theespectively, and we use the notatitx) = f(—x). Thus[G]
generalization of the fluctuation-dissipation relation out ofis analytic int, and we have the relation:
equilibrium. It has been shown for spherical sptesnd for
rotors®° that a generalization of the classical fluctuation- [G](—in)=iG(7), 0<7r<p, (A2)

Both authors are supported by the Center of Material
Theory, Rutgers University. We also thank NSF DMR

G, (t) for t>0

G__(t) for t<O. (A

if dep(€e)ng(e)e ' for bosons
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iIG(B—1) 0<r<pB forbosons need the knowledge of the functions at previous times, so we
. . can construct the functions step by step in time alongtthe
—IG(B=r) 0<7<p for fermlon%,A3) direction. This structure of the equations is general for clas-
o ] sical or quantum spin glass dynamical probleifsge, e.g.,
where the Matsubara Green function is defined'by: Ref. 25. We have to solve a set of coupled differential equa-
tions in t. However, in this problem the situation is more
G(T)E_<Tb(7)b’f(0)>=f dep(f)ﬁB(e)e*fT for bosons, complicated, since we first have to compute an unphysical
(Ad) bosonic function, which oscillates a lot. A naive algorithm is
to compute the derivatives a each pointt() for a fixedt,
G(m)=—(TH(r)f'(0)) and extrapolate using a first order Taylor expansion. How-
ever, for numerical integration of ordinary differential equa-
tions (ODE), this method is not recommendé&ske, e.g., Ref.
47), since one needs a very tiny mesh size to obtain accurate
The same formula also holds for the self-energy. result. In our case, we found that this simple algorithm does

Using this result, we find the imaginary time equations innot give any good result for a reasonable computational cost,

[Gl(—in=

:—f dep(e)ne(e)e™ <" for fermions. (A5)

the paramagnetic state: contrary to simpler models studied previougtyg., classical
p-spins models
(G YH(ivy)=ivetN—2(ivy,), (A6a) Hence, we used a modified procedure, inspired by the

5 2 0 Stoer-Burlish algorithm fofODE): let us assume that we
(1) =G(7)(JGG(7)G(—7)+Jgx (7)), (ABb)  have computed the functions until tini@nd we want them
at timet+ & whered is our mesh size. We cut this step into

G(r=0")=-S. (ABC) N parts, and compute the functions foki 8/N for all t’ and
They are a slight generalization of E) of Ref. 22, includ- 1<i=<N, using the modified midpoint methdd.we then
ing the bath. obtain the functions dt+ 6, for variousN and allt” and we

Similarly, in the glassy phase, using the same techniqueeXtrapolate the result tbl—o. Typically, we use 3 or 4
we find Egs.(31) of Ref. 22 with ® =1/y/3, which corre- values ofN among{4,8,16,32. The integrals are computed

sponds to the marginality criterion, as explained in Ref. 22.Using either a trapezoidal or a Simpson formula. It is impor-
tant to notice that the structure of Eq46) implies that we

do not need to keep the intermediate point after thed
have been computed. As explained in the text, the dynamical

In this Appendix, we provide some details about the nu-equations conserve the constraint, which is automatically sat-
merical solution of our main equatio6). In order to com- isfied in the time evolution: it is also important for the sta-
puteR andK on the domain 8:t’ <t, we use the causality of bility of the algorithm that its discrete implementation of
Eqgs.(16): in order to compute the function irt,(’) we only  Egs.(16) respects this conservation exactly.

APPENDIX B: NUMERICAL SOLUTION
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