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Warning: The following notes are un-
der construction.
They contain many inaccuracies, rep-
etitions, and last but not least misprints.
Every bit should be taken with a grain
of salt.





Foreword

These notes are written as the basis of an eight hours lecture series given at the
Institut de physique théorique de Saclay (IPhT).

The aims are quite modest, as the reader may check on the table of contents.
The first part contains few formally stated theorems and no proofs. There

are many (maybe even too much) explicit computations on simple examples. We
hope that this helps the reader to get a precise if non-rigorous perspective on the
most basic rough paths concepts. Some mathematical elaborations are presented
in the second part.

When I first heard introductory seminars or tried to read the few textbooks on
the subject, I really felt at sea and it took me quite a few hours of intense efforts
before something clicked. As usual, once it appended, I realized that the text-
books were in fact extremely clear and well-written and I could hardly remember
why I did not grasp the basic definitions on the spot.

This is why I decided to offer a different starting point in these notes, with
the hope that it might help some readers so they will waste less time than I did.
I apologize to the others. Anyway, either to start or to get deeper, I can only
recommend the textbooks [2] and (at a more slightly more advanced level) [3].

Another aim of these notes is to build on some physical intuition for certain
of the phenomena and constructions encountered in rough paths theory. We
shall try to reinterpret these features using the vocabulary of the renormalization
group. The analogy is far from perfect, limited but nevertheless illuminating.
One of the important simplification is that there are no anomalous dimensions
in rough paths theory, which essentially deals with paths (!) that is with one-
dimensional objects. The ideas of rough path theory can be generalized to fields,
yielding to the theory of regularity structures, which has even closer links with
renormalization theory, but which requires a much higher technical background
(in distribution theory for instance) than rough paths theory. We shall not at all
deal with regularity structures in these notes, but they have been used to tackle
some long standing open (mathematical) questions, one example being the solu-
tion of the Kardar-Parisi-Zhang equation.

Rough paths theory has a deep interplay with continuous stochastic processes,
and I this is apparent even at the modest level of these notes. Brownian motion,
and its fractional cousins at a more advanced level, serve as a constant source of
examples.
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Basic Concepts





Introduction

Rough paths with words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

It is a frequent situation in mathematics that certain notions are defined via a
limiting procedure.

Think for instance as integrals as limits of sums: integrals are approximated
by sums, sums involve only very basic algebra whereas integrals involve some
analysis, so there is a price to pay. But once integrals are defined, they can be used
in the opposite direction, to approximate sums. And integrals are more flexible
tools than sums, mainly because the possibility of changing variables.

Another example is the deep relationship between random walks and Brow-
nian motion. Among the multitude of definition of Brownian motion, quite a few
are via the approximation by random walks. Again, random walks are rather con-
crete objects (in particular the simple symmetric random walk) whose definition
requires minimal mathematical investment, whereas Brownian motion requires
a more involved mathematical setting. But Brownian motion is nevertheless a
sharp and invaluable tool to study (asymptotic properties of) random walks, a
salient example being the law of the iterated logarithm. And again Brownian
motion, the limiting object, is a more flexible tool than random walks. It is fully
characterized by a few axioms in which it is not so easy to detect the relation-
ship to random walks, though ignoring this relationship would really be a sad
omission.

It is to be noted that some random walks are not good approximations to
Brownian motion (or vice versa). Sometimes, they approximate other processes,
like Levy processes. But there is always a flavor of what physicists call universal-
ity: a huge zoo of random walks and a more manageable menagerie of processes.

Rough
paths with

words

Rough path theory can also be viewed as such an interplay involving approx-
imations, limits and the like. Just a Brownian motion or Levy processes, rough
paths can be defined axiomatically without talking of any approximation scheme.
And just as Levy processes theory, rough path theory tames a wildlife. This time
it is about the possible limiting behaviors of paths and their iterated integrals.

The basic observation is that whereas the iterated integrals of a piecewise
smooth1 function are defined without ambiguity and can be recovered from the

1Contrary to standard practice, is these notes the term “smooth” refers to differentiable, not
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function, this can be completely scrambled by taking limits even when they exist.
Let us illustrate this on a trivial example: the approximation of the diagonal

of the unit square in the plane by a path on the square lattice, as pictured below
with mesh 1, 1/4, 1/16:

The lattice path gets closer and closer to the diagonal, but its length remains 2,
and in particular does not converge to the length of the diagonal,

√
2. Though the

analogy is limited, the rough paths philosophy would be to take as the limiting
object of the lattice paths not only the diagonal of the unit square, but also to keep
track of the anomalous scale. Rough path theory would also put this additional
information to good use.

Returning to the general setting, the failure of the limit of functions/paths to
describe faithfully what is going on has two main manifestations. First, good
approximations to a functions can lead to different approximations of its iterated
integrals, even if one is approximating smooth objects. Second, functions and
their line integrals may converge, but there may be no direct integration theory
to define the iterated integrals of the limiting function because it is too irregular.

The axiomatic definition of rough paths is a way to take those two elementary
observations into account. Basically, one needs to break the strict bond between
functions and their iterated integrals and give those some freedom. So a rough
path is a collection of objects, with a standard function/path as its most basic
object, and some substitutes for its iterated integrals. Those substitutes have a
part of arbitrariness but they are constrained by some combinatorial and analyti-
cal conditions that reflect those of bona-fide iterated integrals. The combinatorial
conditions are essentially Chasles relation in disguise. Another way to say the
same thing, the combinatorial conditions ensure the closure of the flow in the
context of solutions of differential equations. The analytical conditions endow
rough paths with a topology which allows to compare them to various objects,
discrete or continuous.

It turns out that the combinatorial plus analytical conditions ensure that in fact
only a finite number of iterated integrals need to be specified, and then the others
are fully determined. This leads to a first analogy with renormalization in quan-
tum field theory. In a renormalizable theory, only finite number of conditions
are needed to eliminate infinities and ambiguities, making all correlation func-
tions finite. There are (at least) two important differences. First, in quantum field

necessarily infinitely differentiable.
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theory a finite number of constants need to be specified, whereas in rough paths
theory one needs a finite number of functions. Second, whereas renormaliza-
tion is needed because naive computations lead to infinities, rough paths theory
is needed because naive computations lead to undefined (but not systematically
unbounded) results.

Before we give a more detailed and technical motivation for rough paths via
differential equations, let us note that scale invariance plays a fundamental role
in rough path theory, but there are no anomalous dimensions. Regularity struc-
tures, a subject we shall not elaborate on, are a generalization of rough paths
that allow to tackle more realistic problems involving true renormalization. This
approach culminates in a rigorous treatment of a number of singular stochastic
partial differential equations, like the famous Kardar-Parisi-Zhang equation.

Rough paths theory was built in the 1990’s mainly under the impulse of Terry
Lyons. A friendly but serious introduction to rough path is [2], to which we
refer the reader for a deeper treatment of the subject. A more difficult but more
complete reference is [3].





CHAPTER 1

Motivations

1.1 Controlled differential equations . . . . . . . . . . . . . . . . . . . . 7
1.2 The generic one-dimensional setting . . . . . . . . . . . . . . . . . . 9

The following discussion is a bit technical but stresses a few important points
of the rough paths philosophy. We introduce the notion of controlled differential
equations. If one tries to adapt the traditional Euler scheme for solving ordinary
differential equations to this new situation, problems arise: it may happen that
the Euler scheme does not apply naively, or that it simply fails. An attempt to
improve it quickly leads to a new structure, that of a rough path.

As we mentioned briefly, among the origins of rough paths theory is the be-
havior of iterated integrals: if Q := (Qi)i∈J1,nK is a collection of smooth functions
from [a, b]toR, the iterated integrals of Q are the tensors

∫
a<s1<···<sk

dQi1
s1
· · ·dQik

sk

for k ∈ N∗. The point is that if Q(ε)ε>0 is a family of such maps and there is a limit
Q := limε↓0 Q(ε) exists in some appropriate sense, several (related) pathologies
are possible. First, it may happen that the limit Q is smooth but the limit of iter-
ated integrals does not exist, or does not coincide with the iterated integrals of the
limit. Second, the iterated integrals might have a limit, but Q itself is not smooth
enough for its iterated integrals to make any apriori sense. We shall see a num-
ber of examples in what follows. Controlled differential equations will quickly
confront us with those questions.

1.1
Controlled
differential
equations

Even if the name itself is not well-known, most of us are probably familiar
with the concept of controlled differential equations. They make their appearance
when a system does not respond directly to the passage of time, but to some aux-
iliary time dependent quantities taken as input. A controlled differential equation
has the following generic form

dYt = V(Yt, Xt)dXt for t ∈ [a, b] with initial condition Ya = ya

where X := (Xt)t∈[a,b] is a given path in some vector space E , Y := (Yt)t∈[a,b] is some
unknown path in another vector space F and, for each (y, x) ∈ F × E, V(y, x) is a
linear map from E to F. It is often the case that V(y, x) is not defined globally but
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only in a neighborhood of (ya, xa) and then we look for at least a local solution
for t ∈ [a, a+ δ].

For the time being, we have given no meaning to controlled differential equa-
tions. If the path X is smooth, i.e. if the derivative dXt

dt
is well-defined for t ∈

[a, b] we can interpret the above controlled differential equation to fall back to the
framework of ordinary differential equations by setting Ṽ(Yt, t) := V(Yt, Xt)

dXt

dt

an turning the controlled differential equation into

dYt = Ṽ(Yt, t)dt for t ∈ [a, b] with initial condition Ya = ya.

Let us stress that this is an interpretation: we do not relate two meaningful things,
but turn an apriori meaningless one to a meaningful one. Rough paths theory
gives a precise meaning to controlled differential equations for sources X that
may be far from smooth. It turns out that for smooth sources rough paths theory
is consistent (it better be!) with the above interpretation.

We can and shall often, introduce local coordinates, say E ∼= Rn, F ∼= Rd so that
the controlled differential equation rewrites

For µ = 1, · · · , d : dYµ
t =

n∑
i=1

Vµ
i (Y

1
t , · · · , Yd

t , X
1
t , · · · , Xn

t )dX
i
t.

One example that is well-known to physicists is when n = 2, d = 1 and X =(
Bt

t

)
t≥0

where B is a Brownian motion and V(y, x) = (σ(y), v(y)) so that,

dYt = v(Yt)dt+ σ(Yt)dBt or Ẏt = v(Yt) + σ(Yt)ξt in physicists notation,

where ξt is a white noise (hence a distribution, not a function). In this context, the
name “stochastic differential equation” is used in place of controlled differential
equation. To make sense of this diffusion equation, one turns it into an integral
equation:

Yt = y0 +

∫ t

O

v(Yt)dt+

∫ t

O

σ(Ys)dBs.

Then a solution to the diffusion equation is a process Y such that first both inte-
grals on the right-hand side are well-defined, and second such that the two sides
turn out to be equal. Several mathematical remarks are in order. Assume that σ is
not constant (i.e. independent on the position y). First, a new integration theory,
stochastic integration, has to be available. Second, the stochastic integral theory
is defined as a limit of discrete sums but the limit depends on conventions: math-
ematicians usually work with the Itō convention, when physicists tend to favor
the Stratanovich convention. And last but not least, the stochastic integral is not
defined pathwise, but in mean square or in probability: informally, the statement
is that when the mesh is small, the discretized sum has a probability close to 1

to be close to the integral – this is far from saying that sample by sample the dis-
cretized sum goes to the integral when the mesh goes to 0. These subtleties cause
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little or no trouble usually. Stochastic calculus (à la Itō or Stratanovich) justifies
blind manipulation, and numerical computations are not really sensitive to the
problem because one works usually only with regular time steps – adaptative
methods are already harder to justify.

The intrinsic study of stochastic differential equations on manifolds is no-
tably difficult, one of the reason being the absence of a pathwise definition of
the stochastic integral. Let us clarify this point in the general context of control.
Instead of vector spaces E and F, practical applications may force to consider
manifolds M and N, a given curve X on M parameterized by time and a family
V(y, x), x ∈ M,y ∈ N of linear maps: for given (x, y) ∈ M×N, V(y, x) is a linear
map taking a tangent vector to M at x as input and yielding a vector tangent to
N at y as output. The form of the equation is unchanged:

dYt = V(Yt, Xt)dXt for t ∈ [a, b] with initial condition Ya = ya,

and we can always take local coordinates, in Rn for M and Rd for N. It this ge-
ometric context, it is crucial however that the meaning given to a controlled dif-
ferential equation is intrinsic. In terms of local coordinates, the solutions over
different coordinate patches should knit together nicely. Rough paths theory is
successful in that aspect to.

The notion of pathwise versus non-pathwise solution is important in that
rough paths theory allows to solve stochastic differential equations via a path-
wise procedure. But the general context if that one is given a single X (not a
sample space of Xs) so there is no choice but to work pathwise.

In the next section we specialize to the one-dimensional setting and illustrate
a number of issues on a very simple example.

1.2 The
generic one-
dimensional

setting

Think of making sense, or solving numerically, the equation

dYt = V(Yt)dXt for t ∈ [a, b] with initial condition Ya = ya,

where V is some smooth function, X is a given real source defined on [a, b] and Y

is a real unknown function.
This is called a controlled differential equation because the variations of Y

respond to those of a function X. When Xt := t we recover a standard ordinary
differential equation when the variations of Y respond to the passage of time.
When X is a (piecewise) smooth function of t, it is natural to interpret dYt =
V(Yt)dXt as dYt

dt
= V(Yt)

dXt

dt
which is a special case of the familiar dYt

dt
= U(Yt, t).

We return to the controlled setting.
If f is a smooth function, we expect naively that df(Yt) = f ′(Yt)V(Yt)dXt

which, assuming the integral to make sense, should be a tantamount for f(Yt) =

f(Ys) +
∫t

s
f ′(Yu)V(Yu)dXu. Thinking of t as close to s, the Euler scheme approxi-
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mates f ′(Yu)V(Yu) on the interval [s, t] by f ′(Ys)V(Ys) yielding

f(Yt) = f(Ys) +

∫ t

s

f ′(Ys)V(Ys)dXu + error

= f(Ys) + f ′(Ys)V(Ys)

∫ t

s

dXu + error

= f(Ys) + f ′(Ys)V(Ys)(Xt − Xs) + error.

We’ve made some hair-splitting, the point being that some definitions of integrals
do not allow to factor out constants,1 and that as we have said nothing about
the regularity of X, the “obvious”

∫t

s
dXu = Xt − Xs is maybe not so obvious.

This is what is produced if dXu is interpreted as an exact differential, and also
what discretization suggests. Hence this interpretation is not challenged in the
following.

The idea is then to propagate the solution from the initial to the final time by
small steps, with the hope that the errors do not accumulate to a sizable quantity.

Let us check this idea on one of the simplest examples.

Example 1.1. The case when V(y) := y. Specializing the Euler scheme to this
case, we write Yt ≃ Ys(1 + (Xt − Xs)). Thus if ∆ : a = t0 < t1 < · · · < tn = b is a
subdivision of [a, b] we define Y∆ at subdivision points by

Y∆
a = ya Y∆

tm+1
= Y∆

tm
(1+ Xtm+1

− Xtm) for 0 ≤ m ≤ n− 1,

and extend the definition of Y∆
t for t ∈ [a, b] by linear interpolation for instance.

We assume that X is continuous, so that if s, t ∈ [a, b] with |t − s| small enough,
say |t− s| ≤ δ then |Xt − Xs| ≤ 1/2. If the mesh of the subdivision ∆ , mesh(∆) :=

max0≤m≤n−1 tm+1 − tm, is ≤ δ we can take logarithms: log Y∆
tm

ya
=

∑m1

l=0 log(1 +

Xtm+1
−Xtm). Using the elementary bound −x2 ≤ log(1+ x) − x ≤ −x2/3 for |x| ≤

1/2 we infer that log Y∆
b

ya
− (Xb − Xa) ∈ [−Q∆,−Q∆/3] where Q∆ :=

∑n−1
m=0(Xtm+1

−

Xtm)
2, the quadratic variation of X along ∆. The fate of Y∆ as mesh(∆) ↓ 0 is clear

if X has vanishing 2-variation on [a, b] which by definition means that Q∆ goes to
0 at small mesh.2 Then there is a limiting Y which is Yt = yae

Xt−Xa .
It is a (not so well-known) theorem that, as X is assumed to be continuous,

there is a sequence (∆k)k∈N of finer and finer partitions of [a, b] such that Q∆k

goes to 0 at large k. This has two consequences. First, we could decide to restrict
to such sequences, but this would have major drawbacks because they need a
detailed knowledge of X to be constructed whereas we want an algorithm that
works for arbitrary partitions in the small mesh limit. Second, if arbitrary par-
titions are to be considered, there is a dichotomy: either Q∆ goes to 0 at small

1A prominent example is the Skorokhod stochastic integral.
2This happens in particular if (Xt − Xs)

2 is uniformly a o(t − s), which occurs for instance if
there is a σ > 0 and a constant K such that |Xt − Xs| < K|t− s|1/2+σ for s, t ∈ [a, b].
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mesh, or it diverges3, in which case the discretization leads to a dead end. We
may expect that the situation will not be better when V is generic!

We take this opportunity of discuss an important test case for rough paths
ideas, Brownian motion. If (∆k)k∈N is a sequence of finer and finer partitions of
[a, b] and X is a Brownian motion then, with probability 1, Q∆k converges to b−a

at large k. This is the usual quadratic variation of Brownian motion, and this
result is at the heart of Itō’s stochastic calculus.

Example 1.2. The case when V(y) := y (continued). If (∆k)k∈N is a given se-
quence of finer and finer partitions of [a, b] and X is a Brownian motion then,
with probability 1, the approximation Y∆k based on the Euler scheme above ap-
proaches a limiting Y which is Yt = yae

Xt−Xa−(t−a)/2. Indeed, we can refine the
above inequality for the log to: −x2/(2(1− ε)) ≤ log(1+ x) − x ≤ −x2/(2(1− ε))
for |x| ≤ ε. By assumption δk := mesh(∆k) goes to 0 at large k. Then εk :=
sup

s,t∈[a,b], |t−s|≤δk
|Xt −Xs| goes to 0 at large k as well(Brownian motion is continu-

ous!) and log Y
∆k
b

ya
− (Xb −Xa) ∈ [−Q∆k/(2(1− εk)),−Q∆k/(2(1+ εk))]. This settles

the case when t = b. We leave it to the reader to make the obvious modifications
needed to deal with a generic t ∈ [a, b].

Brownian motion could seem to be a counter-example to the above statement
that 0 is the only possible finite limit for 2-variation. It is not, and the subtlety
is the following. It is another (again not so well-known) theorem that if X is a
Brownian sample, there is, with probability 1, a sequence (∆k)k∈N of finer and
finer partitions of [a, b] such that Q∆k goes to +∞ at large k.4

The situation here is not too bad because when we do numerical computation
we usually fix a single partition with small mesh (or a few partitions to test sta-
bility) and use them for a number of samples. The use of adaptative methods
is already more questionable but can be dealt with. However, let us stress that
the rough paths philosophy insists apriori that rough paths theory should work
pathwise. That is, given the Brownian sample X we want some Y to exist such
that for every partition of sufficiently small mesh Y∆ is close to Y. This could
be judged as too stringent a condition but, as we shall see below, it can be ful-
filled with some modification of the Euler scheme. Moreover, we have not made
any mention whatsoever of conventions for stochastic integrals in the above dis-
cussion. The result of our naive approach, that the solution of dYt = Yt dXt is
Yt = yae

Xt−Xa−(t−a)/2 for X a Brownian motion, should look strange: we have
automatically (should we say automagically?) implemented the Itō convention

3Remember that divergence is just the negation of convergence, we do not mean “diverges to
infinity” in general.

4Thus if the sequence of partitions is given in advance and used for each and every Brown-
ian sample then the 2-variation behaves well. However, if the we give the Brownian sample in
advance we can tailor partitions for which the 2-variation is as small or as large as we wish.
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even if we dealt with classical manipulations of differentials. We shall see be-
low that the rough paths philosophy revives the possibility of several different
conventions.

Then again, how should we deal in general with sources X that do not have
vanishing 2-variation ? The clue is a closed (but implicit) formula for the er-
ror: applying to f ′V the formula we had for f, we get (f ′V)(Yu) = (f ′V)(Ys) +∫u

s
(f ′V) ′(Yv)V(Yv)dXv leading to

f(Yt) = f(Ys) +

∫ t

s

(
(f ′V)(Ys) +

∫u

s

(f ′V) ′(Yv)V(Yv)dXv

)
dXu.

This formula has (at least) two useful applications. Before turning to those, let us
mention that we could iterate again, this time using a representation of (f ′V) ′V)(Yv)−
(f ′V) ′V)(Ys) as an integral and so on, a close analog of the Born expansion in
quantum mechanics.5

The first application is that the error in our previous computation is

error =

∫ t

s

(∫u

s

(f ′V) ′(Yv)V(Yv)dXv

)
dXu.

Very naively, we expect that this error (an integral involving the data over a tri-
angle) to be of the order of the square of the term retained in the approximation
(an integral involving the data on a segment). In the case when X is smooth, it
is clear that the line integral is O(t − s) and the surface integral is O((t − s)2)
and the accumulated error over a finite interval is of order the mesh of the set of
points chosen to interpolate between the initial and the final point, leading to a
convergent approximation at small mesh.

As a second application we may approximate (f ′V) ′(Yv)V(Yv) on the interval
[s, u] by (f ′V) ′(Yv)V(Yv), leading to

f(Yt) = f(Ys) + (f ′V)(Ys)(Xt − Xs) + ((f ′V) ′V)(Ys)

∫ t

s

(∫u

s

dXv

)
dXu + error

= f(Ys) + (f ′V)(Ys)(Xt − Xs) + ((f ′V) ′V)(Ys)

∫ t

s

(Xu − Xs)dXu + error.

Getting to the next order in the Born expansion would show that when X is
smooth the error is uniformly O((t − s)3), leading to an improved convergence,
the accumulated error over a finite interval being of the order of the square of the
mesh. All this is well-known, but our whole point is to deal with the case when
X is not smooth...

It is again tempting to make the obvious guess that
∫t

s
(Xu − Xs)dXu = (Xt −

Xs)
2/2, interpreting (Xu−Xs)dXu as an exact differential. Let us see where it leads

us, i.e. explore the behavior of Y∆. We do this again for our simple example.

5And we use the name “Born expansion” for the procedure in the sequel.
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Example 1.3. The case when V(y) := y (continued). Using the second order Born
approximation, we are led to

Y∆
a = ya Y∆

tm+1
= Y∆

tm
(1+ (Xtm+1

− Xtm) + (Xtm+1
− Xtm)

2/2) for 0 ≤ m ≤ n− 1.

If s, t ∈ [a, b] with |t − s| small enough, say |t − s| ≤ δ then |Xt − Xs| ≤ 2. We
can take the logarithm again and bound with | log(1 + x + x2/2) − x| ≤ e|x||x|3/6

for x ≥ −2 to get that | log Y
∆k
tm

ya
− (Xtm − Xa)| ≤ C∆e2/6 if mesh(∆) ≤ δ where

C∆ :=
∑n−1

m=0 |Xtm+1
− Xtm |

3 is the cubic variation of X along ∆. This time the fate
of Y∆ as mesh(∆) ↓ 0 is clear if X has vanishing 3-variation on [a, b] which by
definition means that C∆ goes to 0 at small mesh.6 Then there is a limiting Y

which is Yt = yae
Xt−Xa . Thus, if X has vanishing 3-variation, using a second order

Born expansion and a naive integration formula
∫t

s
(Xu − Xs)dXu = (Xt − Xs)

2/2

we recover the naive solution of dYt = Yt dXt namely Yt = yae
Xt−Xa .

Let us see some consequences when X is a Brownian motion. Then X has
vanishing 3-variation with probability 1 (in the strong, pathwise, sense: we can
choose the sample and then choose any subdivision with small mesh to approach
the 3-variation). It is reassuring that implementing the Stratanovich convention
for the integral

∫t

s
(Xu−Xs)dXu i.e. setting its value to (Xt−Xs)

2/2 (for which there
is no pathwise justification via a discretization) the use of the second order Born
approximation leads pathwise to the Stratanovich solution of dYt = Yt dXt.

Notice that “integration” as the operation “inverse of differentiation” was al-
most a definition before Riemann (though Archimedes already used discretiza-
tion to compute areas and volumes). However, 175 years later we recognize that
this fact, the fundamental theorem of calculus, is a consequence of an indepen-
dent definition of the integral via discrete approximations. Moreover, it is easy to
generalize the Born expansion to the case when X = (Xi)i=1,n (and Y) have several
components, see D.2. Instead of one double integral, the above formula would in-
volve a linear combination of

∫t

s
(Xi

u−Xi
s)dX

j
u with possibly different components

i, j of X and then no exact differential miracle could save us from the boredom
of really dealing with another definition of the iterated integral. Itō integration
gives a definition (though not a pathwise one) of

∫t

s
(Xu − Xs)dXu via a discretiza-

tion. Let us see where this definition, when applied to the second order Born
approximation, leads us to. But before that, we propose the following exercise to
the reader

Exercise 1.4. Check that the naive Born expansion (valid if X is differentiable) to
kth order for dYt = Yt dXt is

Yt = Ys

(
1+

∫
s≤u1≤t

dXu1
+ · · ·+

∫
s≤u1≤···≤uk≤t

dXu1
· · ·dXuk

)
+

∫
s≤u1≤···≤uk+1≤t

Yu1
dXu1

· · ·dXuk+1
.

6This happens in particular if |Xt − Xs|
3 is uniformly a o(t − s), which occurs for instance if

there is a σ > 0 and a constant K such that |Xt − Xs| < K|t− s|1/3+σ for s, t ∈ [a, b].
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Check that the kth iterated integral is, if X is differentiable, (Xt − Xs)
k/k!.

Check that if X is the (pointwise) limit of a sequence of differentiable maps,
the limit of the kth is again (Xt − Xs)

k/k!.7

Check that under the naive assumption that this formula holds also for a less
regular source, the corresponding kth order Euler scheme leads to a convergent
procedure if X has vanishing (k+ 1)-variation, and the corresponding solution is
the naive solution of dYt = Yt dXt namely Yt = yae

Xt−Xa .
Check (or accept) that if X has vanishing (k + 1)-variation then all its higher

variations vanish as well and infer that the procedure is stable under a change of
the order of the Euler scheme.

Example 1.5. The case when V(y) := y (continued). We suppose that X is a Brow-
nian motion and we use the second order Born approximation, but this time with
the Itō convention 2

∫t

s
(Xu − Xs)dXu = (Xt − Xs)

2 − (t− s). We are led to Y∆
a = ya

and

Y∆
tm+1

= Y∆
tm
(1+(Xtm+1

−Xtm)+(Xtm+1
−Xtm)

2/2−(tm+1−tm)/2) for 0 ≤ m ≤ n−1.

We observe that

log(1+ x+ x2/2+ r/2) = x+ r/2−
x3

6
(1+ c1(x)) −

xr

3
(1+ c2(x)) −

r2

8
(1+ c3(x, r)),

where c1, c2, c3 vanish at the origin and are analytic close to the origin. We in-
fer that for small enough x, y we have | log(1 + x + x2/2 + r/2) − x − r/2| ≤
|x|3/3+ |xr|+ r2/4. Using that

∑n−1
m=0 |Xtm+1

− Xtm |
3,
∑n−1

m=0 |Xtm+1
− Xtm |(tm+1 − tm)

and
∑n−1

m=0(tm+1 − tm)
2 are small if ∆ has a small mesh (the first is because Brow-

nian motion has vanishing 3-variation, the second because Brownian motion is
continuous), we infer the there is a limiting Y, namely Yt = yae

Xt−Xa−(t−a)/2.

It is reassuring again that implementing the Itō convention for the integral∫t

s
(Xu−Xs)dXu i.e. setting its value to (Xt−Xs)

2/2−(t−s)/2, the use of the second
order Born approximation leads pathwise to the Itō solution of dYt = Yt dXt.

To summarize this slightly lengthy discussion,

• The first order Euler scheme for dYt = Yt dXt

– Yields a limiting Y if X has vanishing 2-variation.

7This holds even if X is irregular enough that no known procedure allows to make sense
of the integral directly. Thus the naive assumption in the next question is natural somehow.
Nevertheless, pointwise convergence is not the only way to approach X. Moreover, as already
mentioned, when we turn to integrals involving several components of a path, it may happen
that the limiting X is regular enough for a direct definition of the integral, but which is not the
limit of the integrals of the approximations, even if the convergence is better than pointwise, see
Section 3.1 and D.1for an illustration.
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– Breaks down if X does not have vanishing 2-variation, tough for Brow-
nian motion, renouncing to a pathwise procedure, is leads to the Itō
solution.

• The second order Euler scheme for dYt = Yt dXt

– Yields the Stratanovich solution if X has vanishing 3-variation (in par-
ticular if X is a Brownian motion) and if the integral

∫t

s
(Xu − Xs)dXu is

taken in the Stratanovich sense.
– Yields the Itō solution if X has vanishing 3-variation (in particular if X

is a Brownian motion) and if the integral
∫t

s
(Xu−Xs)dXu is taken in the

Itō sense.

Thus, even if we would restrict our attention to Brownian motion, the second
order Euler scheme is better behaved than the first order Euler scheme: it leads to
a pathwise solution and leaves room for the different conventions in a consistent
way.

For Brownian motion, the Itō and Stratanovich convention are natural and
the most used in practice, but they are certainly not the only ones. And if an X is
given, of vanishing 3-variation for instance, but yet with important short distance
“fluctuations”, there are few clues to decide what

∫t

s
(Xu − Xs)dXu should be. As

we have observed at the beginning of this chapter, approximating X with smooth
paths does not lead to an unambiguous definition (if any) of

∫t

s
(Xu − Xs)dXu. So

why no give it a name, i.e. set “
∫t

s
(Xu − Xs)dXu := Xs,t” and see what happens?

Example 1.6. The case when V(y) := λy. We introduce a parameter, λ, for con-
venience, so that the second order Born approximation to go from time s to time
u is Yu ≃ Ys(1 + λ(Xu − Xs) + λ2Xs,u). On the other hand, adding another point
in the game, t, we may go from s to u via t, leading to Yu ≃ Ys(1 + λ(Xt − Xs) +
λ2Xs,t)(1+ λ(Xu − Xt) + λ2Xt,u). How do these two approximation compare? The
difference between the second and the first is seen to yield 1 − 1 = 0 at order λ0,
(Xu − Xs) − ((Xu − Xt) + (Xt − Xs)) = 0 at order at order λ1. Then come

Xs,u − (Xs,t + Xt,u + (Xt − Xs)(Xu − Xt)) at order λ2,

−(Xs,t(Xu − Xt) + (Xt − Xs)Xt,u) at order λ3,

and −Xs,tXt,u at order λ4. It is readily checked that if the Itō or Stratanovich inter-
pretations of

∫t

s
(Xu − Xs)dXu are substituted for Xs,t the term of order λ2 vanishes

identically. It is also easy to relate this vanishing to Chasles’ relation, or, what
amounts to the same in the case at hand, to the closure of the flow in the putative
solution of the controlled differential equation. Doing the same substitutions in
the higher order terms in λ does not yield 0 but the result at order λ3 is negligible
when the times steps are small and X is such that “(Xt−Xs) = o((t−s)1/3) in which
case

∫t

s
(Xu − Xs)dXu (Itō or Stratanovich) is o((t − s)2/3. Then the λ4 contribution

is harmless.
To summarize, if (X,X) is chosen in such a way that
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Combinatorial condition: Xs,u − (Xs,t + Xt,u + (Xt − Xs)(Xu − Xt)) = 0,

Regularity conditions: (Xt − Xs) = o((t− s)1/3) and Xs,t = o((t− s)2/3),

the second order Euler scheme for dYt = λYtdXt with the interpretation
∫t

s
(Xu −

Xs)dXu := Xs,t will be convergent.

Exercise 1.7. Show that the cocycle relation Xs,u−(Xs,t+Xt,u+(Xt−Xs)(Xu−Xt)) =
0 is enough to ensure the closure of the flow for the second order Euler scheme
associated to the general equation dYt = V(Yt)dXt, i.e. Yt ≃ Ys + V(Ys)(Xt −Xs) +
(V ′V)(Ys)Xs,t.

Exercise 1.8. Show that if X is smooth, Xs,t :=
∫t

s
(Xu − Xs)dXu (note what defines

what here) satisfies automatically the cocycle relation Xs,u − (Xs,t + Xt,u + (Xt −
Xs)(Xu − Xt)) = 0. Infer that if X(ε)ε>0 is a family of such maps and there is a
limit when ε ↓ 0, say X for the paths and Xs,t for the iterated integrals, then the
limit satisfies the cocycle relation. This is another reason to consider this relation
as fundamental.

This suggests that to make sense of a numerically convergent scheme for a
controlled differential equation when the driving function X is irregular (typi-
cally, when the driving function does not have vanishing quadratic variation),
one needs to supplement X with other data which involve some arbitrariness.
The path X supplemented with additional components playing the role of inte-
grals, subject to certain natural conditions (the object called X above) is what is
called a rough path.

Let us note that we have not really defined what it means for Y to be a solution
of dYt = V(Yt)dXt. But we are close enough. First, we should acknowledge that
X must be supplemented with a X, set X := (X,X = and rewrite the equation as
dYt = V(Yt)dXt. The we say that Y solves the equation (on some interval) if for
s, t in that interval Yt − Ys − V(Ys)(Xt − Xs) − (V ′V)(Ys)Xs,t = o(t− s).

This is hopefully enough motivation for the usefulness of a notion of rough
path and we turn to a formal definition.
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These notes take for granted some familiarity with Brownian motion. The
following sections section hopefully may help a reader who lacks this familiar-
ity. Of course, this presentation only covers a microscopic fraction of the subject.
Though all definitions are (hopefully) correct, the way we formulate them is far
from optimal.

1.A Basic
definitions

from
probability

theory

The reader is advised to skip this section at first reading and jump directly
to the next one, coming back here only when faced with an unknown notion or
notation. We recall a few basic definitions.

Notion of σ-algebra A σ-algebra on a set Ω is a subset F of P(Ω), the set of
subsets of Ω (also denoted by 2Ω) such that:

1. The empty set ∅ ∈ F
2. If A ∈ F then its complement Ω\A also belongs to F .

3. If sets An ∈ F for n ∈ N are given, the ∪n∈NAn also belongs to F .

A member of F is called F-measurable or simply measurable when there is
no risk of confusion. An element of F is also called an event. Suppose that P
is a property of some elements of Ω, i.e. that {ω ∈ Ω, P(ω)} defines a subset
of Ω. The property P is called measurable if {ω ∈ Ω, P(ω)} is an event. It is
customary in probability theory to abbreviate {ω ∈ Ω, P(ω)} simply by P,
that is talk of “the event P”.

The pair (Ω,F) is called a measurable space.

Notion of random variable If (Ω,F) is a measurable space, a map X : ΩtoR is a
(real-valued) random variable if for every interval I ⊂ R the inverse image
X−1(I) := {ω ∈ Ω, X(ω) ∈ I} belongs to F . As an example, for each A ∈
F there is a random variable 1A, called the indicator of A defined by 1A :

ΩtoR, ω 7→ 1A(ω) =

{
1 if ω ∈ A

0 ifω /∈ A
.
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Notion of probability measure If (Ω,F) is a measurable space, a probability mea-
sure on (Ω,F) is a map p : F → [0, 1] such that if An ∈ F for n ∈ N are
disjoint then p(∪n∈NAn) =

∑
n∈N p(An). This last condition if rephrased as

“p is σ-additive”.

The triple (Ω,F , p) is called a probability space.

An event A such that p(A) = 0 is called negligible. One defines N :=
{B ⊂ Ω,∃A ∈ F , p(A) = 0}. One shows that8 F := {B ⊂ Ω, ∃A ∈
F such that A∆B ∈ N } is a σ-algebra on Ω called the completion of F with
respect to p, and F is said to be complete if F = F , i.e. if N ⊂ F . One
shows that there is a unique probability measure p on (Ω,F) such that p|F ,
the restriction of p to F coincides with p. Thus, it is usually harmless to
assume that F is complete to start with.

Notion of expectation If (Ω,F , p) is a probability space, one defines the expec-
tation of an indicator by E (1A) := p(A) for A ∈ F .

A simple random variable is a finite linear combination with real coeffi-
cients of indicators of measurable sets. If X :=

∑
m∈J1,nK λm1Am , where Am ∈

F and λm ∈ R are given for m ∈ J1, nK, is a simple function, one sets
E (X) :=

∑
m∈J1,nK λmp(Am).

If X is an arbitrary positive (i.e. ≥ 0) random variable one sets E (X) :=
sup

Y simple, Y≤X
E (Y), a member of [0,+∞]; one says that X is integrable if

E (X) < +∞. If X is an arbitrary random variable, one says that X is inte-
grable |X| is integrable. Then X+ := X1X≥0 and X− := −X1X≤0 are integrable
(i.e. E (X+) < +∞ and E (X−) < +∞) and one sets E (X) = E (X+) − E (X−).

This construction is a special case of the construction of the Lebesgue in-
tegral, and a more standard notation for E (X) outside probability theory
would be

∫
Ω
X(ω)dp(ω).

Spaces of integrable random variables The space of integrable random variables
is denoted by L1(Ω,F , p), or L1 when no confusion is possible. One shows
that L1(Ω,F , p) is a vector space, that X 7→ E (X) is a linear map from L1 to
R. For X, Y ∈ L1, E (|X+ Y|) ≤ E (|X|) + E (|Y|). Moreover, for X ∈ L1 and
λ ∈ R, E (|λX|) = |λ|E (|X|) and E (|X|) = 0 if and only if p(X ̸= 0) = 0, a
condition which defines a linear subspace of L1 called the subspace of neg-
ligible random variables. The map E (·) descends to the quotient of L1 by
this subspace. It is a common abuse of notation that the class modulo neg-
ligible random variables of a random variable X is still denoted by X.9 In
the quotient, the function E (| · |) defines a norm, and the quotient has an
important property: it is complete.

For q ≥ 1, the space of q-integrable random variables (|X|q is integrable) is
denoted by Lq(Ω,F , p). By Hölder’s inequality, it is a vector space and

8Recall that A∆B := {x ∈ A, x /∈ B} ∪ {x ∈ B, x /∈ A}, the symmetric difference of A and B.
9In fact L1 is usually the notation of the quotient space.
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going to the quotient modulo negligible random variables, the function
E (| · |q)1/q defines a norm for which Lq is complete, i.e. every Cauchy se-
quences converges. A sequence (Xn)n ∈ N of members of Lq satisfies the
Cauchy criterion if ∀ε > 0, ∃n ∈ N such that, for l,m ≥ n, E ((Xm − Xl)

q) ≤
ε. Then, as Lq is complete, there is a random variable X ∈ Lq such that
limn→∞ E ((Xn − X)q) = 0.

A very important example is q = 2. Convergence in L2 is also called con-
vergence in mean square.

Exercise 1.9. Check that the sum and product of two random variables are ran-
dom variables.

Check that if X is an arbitrary random variable, X+ := X1X≥0, X− := −X1X≤0

and |X| are positive random variables.
Check that a simple function is a random variable.
Check that the definition of E (X) when X is a simple function is consistent

despite the fact that X can have several representations as
∑

m∈J1,nK λm1Am . Hint:
show that if

∑
m∈J1,nK λm1Am = 0 (the function vanishing everywhere on Ω) then∑

m∈J1,nK λmp(Am) = 0.
Check that if An ∈ F and λn ∈ R are given for n ∈ N with

∑
n∈N |λn| < +∞

then X :=
∑

n∈N λn1An is a random variable.Check that E (X) =
∑

n∈N λnp(An).

1.B A quick
reminder on

Brownian
motion

Brownian motion A Brownian motion on a probability space (Ω,F , p) is a map
B : [0,+∞[×Ω → R, (t,ω) 7→ Bt(ω) such that

1. For each fixed t ∈ [0,+∞[, the map Bt : Ω → R, ω 7→ Bt(ω) is a ran-
dom variable.

2. For each fixed ω ∈ Ω the map (trajectory) B(ω) : sTime → R, t 7→
Bt(ω) is continuous.

3. The probabilistic laws governing Brownian motion are:

Brownian motion is a Gaussian process The finite linear combinations∑
m∈J1,nK λmBtm where λ1, · · · λn ∈ R and 0 < t1 < · · · < tn < +∞

are Gaussian random variables.
Brownian motion starts at the origin With probability 1, B0 = 0.
Brownian motion has independent increments For 0 ≤ s ≤ t ≤ u ≤

v < +∞ the random variables Bt−Bs and Bv−Bu are independent.
For a Gaussian process, this independence reduces to the fact that
E ((Bt − Bs)(Bv − Bu)) = 0.

Law of increments For 0 ≤ s ≤ t < +∞, Bt−Bs is a Gaussian random
variable with mean 0 and variance t − s, i.e. E (Bt − Bs) = 0 and
E
(
(Bt − Bs)

2
)
= t− s.
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The probabilistic laws governing Brownian motion can be rewritten in explicit
terms that suggest a path integral representation: for 0 = t0 < t1 < · · · < tn ∈
[0,+∞[ and I0, I1, · · · , In intervals of R

p(Bt0 ∈ A0, Bt1 ∈ A1, · · · , Btn ∈ An) = 10∈A0

∫
I1×···×In

dx1 · · ·dxn
n∏

m=1

K(tm−tm−1, xm−xm−1)

where x0 := 0 and K(t, x) := 1√
2πt

e−x2/(2t) is the Gaussian kernel. Note that
K(t, x) = 1√

t
K(1, x/

√
t), the density of a standard centered Gaussian random vari-

able of mean 0 and variance 1. This scaling property lies at the heart of the intri-
cacies of Brownian trajectories.

The fact that all those properties can be satisfied is non-trivial.

1.C Two
simple com-

putations

In this section, B : [0,+∞[×Ω → R, (t,ω) 7→ Bt(ω) is a Brownian motion
defined on some probability space.

We start with the quadratic variation. Take an interval [a, b] ⊂ [0,+∞[. If
∆ : a = t0 < t1 < · · · < tn = b is a subdivision, we set Q∆ :=

∑n−1
m=0(Btm+1

−

Btm)
2, which with more details would read Q∆(ω) :=

∑n−1
m=0(Btm+1

(ω)−Btm(ω))2,
stressing that is is a random variable. .

By the basic rules of expectations and the defining properties of Brownian
motion, E

(
Q∆
)
=

∑n−1
m=0(tm+1 − tm) = b− a. Then

E
(
(Q∆)2

)
=

n−1∑
l,m=0

E
(
(Btl+1

− Btl)
2(Btm+1

− Btm)
2
)

= 2
∑

0≤l<m<n

E
(
(Btl+1

− Btl)
2(Btm+1

− Btm)
2
)
+

n−1∑
m=0

E
(
(Btm+1

− Btm)
4
)
.

By independence of increments,

2
∑

0≤l<m<n

E
(
(Btl+1

− Btl)
2(Btm+1

− Btm)
2
)

= 2
∑

0≤l<m<n

(tl+1 − tl)(tm+1 − tm)

=

n−1∑
l,m=0

(tl+1 − tl)(tm+1 − tm) −

n−1∑
m=0

(tm+1 − tm)
2

= (b− a)2 −

n−1∑
m=0

(tm+1 − tm)
2.

Using that the fourth moment of a standard centered Gaussian random variable
is 3 we get by scaling that E

(
(Btm+1

− Btm)
4
)
= 3(tm+1 − tm)

2. To summarize,
E
(
(Q∆)2

)
= (b− a)2 + 2

∑n−1
m=0(tm+1 − tm)

2 and

E
(
(Q∆ − (b− a))2

)
= 2

n−1∑
m=0

(tm+1 − tm)
2 ≤ (b− a)mesh(∆).
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Using the definition of mean square convergence, we infer that the family of ran-
dom variables Q∆ converges in mean square towards b − a, a non-random ran-
dom variable. This limit is called the quadratic variation of Brownian motion
on [a, b]. One also says the quadratic variation of Brownian motion is Qt := t

because the quadratic variation on [a, b] is Qb −Qa.
We turn to the computation of

∫b

a
Bs dBs à la Itō. The Itō algorithm define

integrals as limits of Riemann-like sums is to use retarded sums: the time at which
the integrand (here Bs) is evaluated is always before the times of the increment
of the integrator (here dBs). Concretely this means that

∫b

a
Bs dBs is defined to

be the limit at small mesh of S∆ :=
∑n−1

m=0 Btm(Btm+1
− Btm).10 Of course, nothing

guarantees in advance that the limit exists, or the sense in which it exists. For this
simple case, things are easy. We just have to note that S∆ + Q∆/2 is a telescopic
sum, namely

S∆ +
1

2
Q∆ =

1

2

n−1∑
m=0

(B2
tm+1

− B2
tm
) =

1

2
(B2

b − B2
a).

As Q∆ converges towards b−a in mean square at small mesh by our first compu-
tation, we infer that at small mesh S∆ converges towards ((B2

b − b) − (B2
a − a))/2

in mean square. This is in fact the mode of convergence used for the Itō integral,
and we have shown that∫b

a

Bs dBs =
1

2
(B2

b − b) −
1

2
(B2

a − a).

We note the appearance of an anomalous term with respect to the naive integral.
As already explained in the main text, for (p-almost) every sample B(ω) there

are subdivisions ∆(Ω) of arbitrary small mesh such that Q∆(ω)(ω) is arbitrary
small and others for which it is arbitrary large : one can fine-tune the subdivisions
to the sample to get wildly different results for the quadratic variation Q∆, hence
for the approximations S∆. Thus, for (p-almost) every sample B(ω), S∆(ω) varies
wildly when ∆ ranges over all subdivisions of arbitrary small mesh. There is
no pathwise definition of the integral

∫b

a
Bs dBs. And rough path theory will not

attempt to define this particular integral pathwise. What it will do it take it as
given and use it to provide a pathwise definition of integrals with integrator dBs

but more complicated integrands.
Note that for this simple case, one can show however that if (∆)k∈N is a se-

quence of subdivisions of [a, b] with limk→∞ mesh(∆k) = 0 then, for (p-almost)
every sample B(ω), S∆k goes to ((B2

b − b) − (B2
a − a))/2 at large k. For all these

subtleties, a nice reference (and the only one I know) is [1].

10Again, a more detailed notation stressing the status of random variable would be S∆(ω) :=∑n−1
m=0 Btm(ω)(Btm+1

(ω) − Btm(ω)).


